

"Preconcentration and Separation of some doping drugs using new solid – phase extraction"

A Thesis Submitted To Chemistry Department, Faculty of Science, Ain Shams University

Бy

Samah Ali Mohamed

M. Sc. General Chemistry (2006)

Supervised By

Prof. Dr. Mohamed Fathi El-Shahat

Professor of Analytical and Inorganic Chemistry Faculty of Science, Ain Shams University

Dr. Attia El-Sayed Attia

Assistant Prof. of Analytical chemistry, Faculty of Science, Ain Shams University Dr. Sami M. Abdel-Azeem

Lecturer of Analytical chemistry, Faculty of Science, Fayoum University

"Preconcentration and Separation of some doping drugs using new solid – phase extraction"

A Thesis Submitted by

Samah Alí Mohamed Alí

M. Sc. General Chemistry (2006)

For the Degree of Doctor of philosophy of science in (Inorganic & Analytical Chemistry)

To
Department of Chemistry
Faculty of Science
Ain Shams University

"Preconcentration and separation of some doping drugs using new solid – phase extraction"

By

Samah Ali Mohamed Ali

M. Sc. General Chemistry (2006)

Thesis Advisors	Approved
Prof. Dr. Mohamed Fathi El-Shahat Faculty of Science, Ain Shams University.	•••••
Dr. Attia El-Sayed Attia	•••••
Faculty of Science, Ain Shams University.	
Dr. Sami Mohammed Abdel Azeem	•••••
Faculty of Science, Fayoum University.	

Head of Chemistry Department Prof. Dr. Maged Shafik Antonious Nakhla

Acknowledgment

I here thank Allah almighty for all his blessings and I hope that the effort exerted in this work is for his sake.

I would like to express my profound gratitude and appreciation to Prof. Dr. MOHAMED FATHY ELSHAHAT Professor of Inorganic and Analytical Chemistry, Faculty of Science, Ain Shams University, who offered his precious time, support, encouragement, facilities, kind instructions and reassurance advice for supervising this work. I ask my god to blessing him.

Best gratitude to **Dr. ATTIA El-SAYED ATTIA**Assistant Prof. of inorganic chemistry, Faculty of
Science, Ain Shams University, for his devoted efforts
and continuous guidance.

Special thanks are more than due to **Dr. SAMY**M. Abdel-Azeem Lecturer of Analytical chemistry,

Faculty of Science, Fayoum University, who contributed essential effort and experience for the completion of this work.

I would like to express my deepest gratitude for my parents for their continuous support and dedicate my success to them.

CONTENTS

List of Tables	viii
List of Figures	X
List of abbreviation	xiv
Publish paper	XV
English Summary	I
CHAPTER(1)	
1.INTRODUCTION	1
CHAPTER(2)	
2.REVIEW OF LITERATURE	4
2.1. Review of Literature for Determination of Studied Drugs	4
2.1.1. Corticosteroids	4
2.1.1.1. Betamethasone valerate (BV)	4
2.1.1.1. A. Chromatographic methods	5
2.1.1.1. B. Flow injection methods	8
2.1.1.1. C. Miscellaneous methods	8
2.1.2. Diuretics	9
2.1.2.1. Hydrochlorothiazide (HCT)	10
2.1.2.1. A. Spectrophotometric methods	10
2.1.2.1. B. Chromatographic methods	16
2.1.2.1. C. Flow injection methods	25
2.1.2.1. D. Chemometric methods	25
2.1.2.1. E. Electrochemical methods	27
2.1.3. Stimulants	28
2.1.3.1. Caffeine (CAF)	29
2.1.3.1. A. Chromatographic methods	29
2.1.3.1. B. Spectrophotometric methods	32
2.1.3.1. C. Electrochemical methods	37
2.1.3.1. D. Flow injection methods	38
2.1.3.1. E. Voltammetric methods	39
2.1.3.1. F. Miscellaneous methods	40
2.1.4. Beta-Blockers	41
2.1.4.1 Atenolol (AT)	42
2.1.4.1. A. Electrochemical methods	42

2.1.4.1.B. Chromatographic methods	43
2.1.4.1.C. Spectrophotometric methods	50
2.1.4.1. D. Chemometric methods	51
2.2. Review of Literature for Analytical Determination Using Dyes Technique.	52
2.2.1. Bromo phenol blue (BPB)	52
2.2.2. Alizarin yellow G.G	59
CHAPTER(3)	
3. EXPERIMENTAL	
3.1. Reagents and Solutions	62
3.2 Instrumentation	63
3.3. Synthesis of Sorbents	65
3.3.1. Synthesis of bromo phenol blue polyurethane foam (BPB-PUF)	65
3.3.2. Synthesis of untreated polyurethane foam	65
3.3.3. Synthesis of grafted alizarin yellow GG (AY-GPUF)	66
3.3.4. Synthesis of caffeine imprinted polyurethane foam (IM-PUF)	67
3.3.5. Synthesis of alizarin yellow G.G imprinted polyurethane foam	67
(AY-IPUF)	
3.4. Pharmaceutical Sample	68
3.4.1. Betason tablets	68
3.4.2. Pronto-Plus tablets	68
3.4.3. Moduretic tablets	69
3.4.4. Ateno tablets	69
3.5. Set up of Standard Curve	70
3.6. General Procedure	70
3.6.1. Batch procedure	70
3.6.2. Column procedure	73
3.6.3 Online measurements	74
3.6.3.1. Column preparation	74
3.6.3.2. Online preconcentration procedure	75
3.7. Preparation of Biological Samples	76
3.7.1. Urine sample	76
3.7.2. Plasma sample	77
3.8. Spectrophotometric Determination of Studied Drugs	77

CHAPTER(4)

Aim of the Work

4. RESULTS AND DISCUSSIONS 4.1 (Part I)

Off-Line Preconcentration	78
(A) SPE Sorbents	78
(B) The Sorbent Quality	79
(C) Off - line Separation and Preconcentration Procedure	81
(D) Analyte Preconcentration	82
(E) Separation and Preconcentration Using Batch Procedure	83
4.1.1.Part I, Section (A)	
Preconentration and determination of caffeine in plasma sample	
using untreated polyurethane foam	85
4.1.1.1. Optimization of the Off-Line preconcentration procedure	85
4.1.1.1.1 Effect of pH on the extraction of caffeine	85
4.1.1.1.2. Flow rate effect	85
4.1.1.1.3. Breakthrough capacity	86
4.1.1.1.4. Extraction mechanism	86
4.1.1.1.5. Sorption kinetics	87
4.1.1.1.6. Preconcentration	89
4.1.1.1.7. Adsorption isotherm	90
4.1.1.1.8. Optimization of the elution conditions	92
4.1.1.1.9. Figures of merit	93
4.1.1.1.9.1. Accuracy & Precision	93
4.1.1.1.9.2. Analytical Performance	93
4.1.1.10. Matrix effect	93
4.1.1.1.11 Analysis of spiked human plasma with CAF	94

4.1.2. Part I, Section (B)

Off-line preconcentration of caffeine using different sorbents	104
(Untreated -PUF, CAF/IM-PUF, AY-GPUF, AY-IPUF)	104
4.1.2.1. Characterization of sorbents	104
4.1.2.1.1. IR analysis	104
4.1.2.2. Leaching of template from imprinted Polyurethane Foam	105
(CAF/IM-PUF, AY-IPUF)	105
4.1.2.3. Optimization of the Off-Line preconcentration procedure	105
4.1.2.3.1. Effect of pH on the extraction of caffeine	105
4.1.2.3.2. Sorption capacity	107
4.1.2.3.3. Effect of shaking time	108
4.1.2.3.4. Equilibrium adsorption isotherms	109
4.1.2.3.4.1. Langmuir model	110
4.1.2.3.4.2. Freundlich model	111
4.1.2.3.5. Effect of eluent concentration	113
4.1.2.3.6. Effect of eluent volume	114
4.2. (Part II)	
On-Line Preconcentration and Flow Injection Analysis (FIA) of	100
some Doping Drugs Using Solid Phase Extraction Technique (SPE)	126
A. On-Line Automatic SPE	126
B. Comparison between On - Line and Off - Line SPE	127
C. On-line Separations and Preconcentration Procedures	128
4.2.1. Part II, Section (A)	
Determination of Betamethasone – Velerate (BV), Caffeine (CAF), Hydrochlorothiazide (HCT) by On-Line Preconcentration Using BPB-PUF Sorbent	129
4.2.1.1. Characterization and stability of BPB-PUF	129
4.2.1.2. Chelating activity	130
4.2.1.3. Construction of the calibration curve	131
4.2.1.4. Extraction mechanism	132
4.2.1.5. Optimization of the on-line preconcentration procedure	133

4.2.1.5.1. Effect of sample pH	133
4.2.1.5.2. Preconcentration time	134
4.2.1.5.3. Sample flow rate	135
4.2.1.5.4. Eluent study	136
4.2.1.5.5. Eluent volume	137
4.2.1.5.6. break through capacity	138
4.2.1.5.7. Analytical figures of merit	139
4.2.1.5.7.1. Linearity	139
4.2.1.5.7.2. LOD and LOQ	140
4.2.1.5.7.3. Validity of Beer's law	141
4.2.1.5.7.4. Precision and accuracy	141
4.2.1.5.8. Interference study	142
4.2.1.5.9. Applications	143
4.2.2. Part II, Section (B)	
Determination of Caffeine and Atenolol Using Alizarin Yellow G	
for Imprinted and Grafted Polyurethane Foam.	155
4.2.2.1. Preconditioning of PUF mini column for the online	1.5.5
measurements	155
4.2.2.2. Construction of the calibration curve	156
4.2.2.3. Effect of sample pH	156
4.2.2.4. Effect of sample flow rate	157
4.2.2.5. Preconcentration time	158
4.2.2.6.Break through capacity	158
4.2.2.7. Optimization of the elution conditions	159
4.2.2.8. Analytical performance	160
4.2.2.9. Precision and durability of the sorbent	160
4.2.2.10. Limit of detection and limit of quantification	161
4.2.2.11. Interferences	162
References	
Arabic Summary	17۳ أ

Listed Tables

No.	Table name	Page No.
1.1.A	Isotherm constants for adsorption of CAF by untreated PUF at 25 °C.	100
1.2.A	Optimum conditions for sorption and desorption of CAF onto untreated-PUF	100
1.3.A	Tolerance effect on the recovery of CAF (5mg L ⁻¹) by the presence of recipients and other substances	101
1.4.A	Determination of CAF in human plasma after preconcentration onto untreated PUF column	101
1.1.B	Optimum conditions of sorption and desorption of CAF onto (CAF/IM, AYG, AYI, untreated)-PUF.	124
1.2.B	The Lagergren results for the kinetic desorption of CAF onto (AYG, untreated. CAF/IM, AYI) - PUF.	124
1.3.B	Isotherm parameters for the adsorption of CAF onto AY-GPUF and AY-IPUF sorbents.	125
2.1.A	Important IR bands of untreated and BPB polyurethane foam	150
2.2.A	Optical characteristic and precision data of on-line preconcentration of BV, CAF and HCT using BPB-PUF sorbent.	151
2.3.A	Evaluation of the accuracy and precision of the using proposed methods.	151

No.	Table name	Page No.
2.4.A	Recovery of CAF, BV and HCT (5 mg L ⁻¹) in the presence of recipients and foreign substances.	153
2.5.A	Determination of BV, HCT and CAF in its pharmaceutical dosage applying standard addition technique using BPB-PUF.	154
2.6.A	Recovery data for the determination of BV, HCT, and CAF in 5mL spiked urine sample (n=3).	154
2.1.B	Analytical performance of on-line preconcentration for CAF and AT by AY-IPUF and AY-GPUF sorbents	169
2.2.B	Accuracy of the proposed methods for CAF and AT determination by add-found test	170
2.3.B	Determination of CAF and AT in its pharmaceutical dosage (Pronto-plus tablets, Ateno tablets) applying standard addition technique using imprinted and grafted foam	171
2.4.B	Tolerance levels of caffeine and atenolol (5mg L ⁻¹) in the presence of interfering substances	172

List of Figures

No.	Figure name	Page No.
1.1.A	Effect of solution pH on the adsorption of CAF onto 0.1g untreated PUF and 20 mL of 5 mg L ⁻¹ CAF solution.	95
1.2.A	Effect of flow rate on retention of CAF ($5\mu g$ mL ⁻¹) on untreated - PUF column and desorption with 4 mL, 0.15 mol L ⁻¹ HCl.	95
1.3.A	Effect of break through capacity on elution of CAF with untreated – PUF.	96
1.4.A	Influence of shaking time on the adsorption of CAF onto untreated PUF (0.1 g sorbent, 20 mL sample volume and 5 mg L ⁻¹ caffeine concentration and pH 8).	96
1.5.A	Lagergren plot for adsorption of CAF (20 mL sample at concentration 5 mg L ⁻¹) onto untreated PUF.	97
1.6.A	Intra-particle diffusion profile for CAF adsorption onto untreated PUF (0.1 g sorbent, 20 mL of 5 mg L ⁻¹ CAF concentration and pH 8).	97
1.7.A	Effect of preconcentration volume of CAF (1 μg mL ⁻¹) with untreated -PUF column and desorption with 0.15 mol L ⁻¹ HCl and 1.5 mL min ⁻¹ flow rate.	98
1.8.A	Adsorption isotherm of CAF onto untreated PUF (20 mL sample at pH 8.0, 30 min shaking time and 0.1 g sorbent at 25 °C).	98
1.9.A	Linear isotherm plots of Langmuir isotherm for CAF with untreated PUF.	99
1.10.A	Freundlich isotherm plot for CAF adsorption onto untreated-PUF.	99
1.11.A	Effect of HCl concentration on desorption of CAF (5 mg L ⁻¹) from untreated-PUF column.	100

No.	Figure name	Page No.
1.12.A	Effect of mL add of HCl (0.15 M) on retention of CAF (5μg mL ⁻¹) by using untreated-PUF column and desorption with 0.15mol L ⁻¹ HCl and 1.5 mL min ⁻¹ flow rate at 272.6 nm.	100
1.13.A	Analytical curve for preconcentration of CAF onto untreated PUF: 20 mL sample at pH 8, flow rate 1.5 mL min ⁻¹ and desorption with 4 mL, 0.15 mol L ⁻¹ HCl.	101
1.14.A	Standard addition curve for determination of CAF in 25 mL human plasma at pH 8, flow rate 1.5 mL min ⁻¹ and desorption with 4 mL, 0.15 mol L ⁻¹ HCl.	101
1.1.B	IR spectra of various polyurethane foam phases: AY-IPUF (A), AY-GPUF (B), free AY-IPUF from CAF (C), untreated-PUF (D), reloaded of CAF on AY-IPUF(E), CAF/IM-PUF (F), free IM-PUF from CAF (G).	115
1.2.B	Effect of HCl concentration on soaking of CAF/IM-PUF and AYI –PUF for 24h.	116
1.3.B	Effect of mL adds of (0.1 mol L ⁻¹) HCl on soaking of CAF/IM-PUF and AY –IPUF for 24h.	116
1.4.B	Effect of soaking time of CAF/IM-PUF and AY-IPUF on HCl (0.1 mol L ⁻¹).	117
1.5.B	Effect of pH sorption of CAF (5 μg mL ⁻¹) onto (AYI, IM, untreated, AYG)-PUF.	117
1.6.B	The expected structure of (a) AY-GPUF and (b) CAF: AY-IPUF sorbents.	118
1.7.B	The plot of shacking time for the sorption of CAF onto (AYI, AYG, IM, untreated) -PUF.	119
1.8.B	Lagergren plot for the kinetic desorption of CAF onto (AYI, AYG, IM, untreated) - PUF.	119

No.	Figure name	Page No.
1.9.B	Extraction isotherms of CAF on to (A) (CAF/IM, AYI) - PUF, (B) (AYG, untreated)-PUF.	120
1.10.B	Langmuir adsorption isotherm of CAF on to (AYI, IM, AYG, untreated)-PUF.	121
1.11.B	Freundlich plot for sorption of CAF on to (AYI, IM, AYG, untreated)-PUF.	122
1.12.B	The effect of HCl concentration on the sorption of CAF (5µg mL ⁻¹) onto CAF/IM, AYI, AYG, and untreated-PUF.	123
1.13.B	The effect of mL adds of HCl on the sorption of CAF (5μg mL ⁻¹) onto IM, AYI, AYG, and untreated-PUF.	123
2.1.A	IR spectra of (A) untreated PUF and (B) BPB-PUF.	145
2.2.A	Extraction mechanism via ion – pair complex of BPB-PUF sorbent and HCT in acidic medium.	145
2.3.A	Variation of chelating activity at various concentrations of BV, HCT and CAF towards BPB-PUF sorbent.	146
2.4.A	UV-Spectrum of 5 mg L ⁻¹ from pure (a) CAF (b) HCT (c) BV, against blank.	146
2.5.A	Effect of the sample pH on the peak height absorbance of HCT and CAF (5.0 mg L ⁻¹), 150s, 50s preconcentration time, sample flow rate 1.0 mL min ⁻¹ , desorption with 0.5 or 0.1 mol L ⁻¹ hydrochloric acid.	147
2.6.A	Effect of the sample pH, when adjustment was made by acetate and ammonia buffer or sodium hydroxide, on the peak height absorbance of BV (5 mg L ⁻¹), 150s preconcentration time, sample flow rate 2.0 mL min ⁻¹ , desorption with 0.5 mol L ⁻¹ hydrochloric acid.	147
2.7.A	On-line preconcentration manifold for the determination of BV, CAF and HCT.	148
2.8.A	Effect of the preconcentration time on absorbance of BV, HCT and CAF (5.0 mgL ⁻¹) with pH 9.5, 6.5, 6.5 and with flow rate 2.0, 1.0 and 1.0 mL min ⁻¹ .	148
2.9.A	Dependence of absorbance of the BV, HCT and CAF (5 mg L ⁻¹), on the flow rate, with pH 9.5, 6.5, 6.5 and preconcentration time 150s, 150s and 50s.	149