

GENOTOXIC EFFECT OF METHOTREXATE ON BONE MARROW CHROMOSOMES AND DNA OF MALE ALBINO MICE Mus musculus

A THESIS SUBMITTED FOR
THE AWARD OF THE M.SC. DEGREE
OF SCIENCE TEACHER PREPARATION
(ZOOLOGY)

Sally Ramadan Gabr Eid El-Ashry

(Ed.-B.Sc.)

General Diploma in Science Teacher Preparation – Zoology (2008) Special Diploma in Science Teacher Preparation – Zoology (2009)

Supervised By

Prof. Dr. Nagla Zaky Ibrahim El-Alfy

Professor of Cytogenetics - Biological and Geological Sciences Department Faculty of Education - Ain Shams University

Dr. Mahmmod Fathy Mahmmod

Lecturer of Zoology – Biological and Geological Sciences Department Faculty of Education – Ain Shams University

TO

BIOLOGICAL AND GEOLOGICAL SCIENCES DEPARTMENT-FACULTY OF EDUCATION - AIN SHAMS UNIVERSITY

2015

APPROVAL SHEET

Name: Sally Ramadan Gabr Eid

Title: GENOTOXIC EFFECT OF METHOTREXATE ON BONE MARROW CHROMOSOMES AND DNA OF MALE ALBINO MICE Mus musculus

Supervisors Approved

Prof. Dr. Nagla Zaky Ibrahim El - Alfy

Professor of Cytogenetics, Biological and Geological Sciences Department, Faculty of Education, Ain Shams University.

Dr. Mahmmod Fathy Mahmmod

Lecturer of Zoology, Biological and Geological Sciences Department, Faculty of Education, Ain Shams University.

ACKNOWLEDGMENT

First of all, I wish to offer my deep thanks to **ALLAH** for the support in every step which enabled me to overcome all the problems that faced me throughout the work.

I would like to express my special appreciation and thanks to **Prof. Dr. Nagla Zaky EL-Alfy** Professor of Cytogenetic, Zoology Department, Faculty of Education, Ain Shams University, for suggesting the point and supervising the whole work. Sincere thanks are also for her continuous guidance and critical reviewing of this manuscript. Her advice on both research as well as on my career have been priceless. I am grateful to her for her excellent direction in the completion of this work.

It pleases me to offer special thanks to **Dr. Mahmmod Fathy Mahmmod** lecturer of Zoology,

Biological and Geological Sciences Department, Faculty

of Education, Ain Shams University, for his continuous encouragement and advice during the stages of this work. Sincere thanks are also due to him for their guidance and constructive critical reading of this manuscript.

I would also like to thank head of Biological and Geological Sciences Department, Faculty of Education, Ain Shams University and the staff members for their co-operation.

Special thanks to my family. Words cannot express how grateful I am to my mother and my father for all of the sacrifices that you've made on my behalf. I am greatly indebted to thank my siblings, my beloved daughter **Sila** and my husband for their continuous encouragement.

ABSTRACT

Methotrexate (MTX), a chemical analogue of folic acid, is an antineoplastic, antirheumatic and antipsoriatic drug which is used in a variety of clinical schedules and combination therapy regimens in man. The present work is mainly concerned with the study of the genotoxicity of methotrexate on bone marrow chromosomes and DNA content of male albino mice *Mus musculus*.

Sixty male albino mice, 16-18 weeks old weighing approximately mean 24 ± 2 g were used in the present study and randomly divided into four groups; one control and three methotrexate treated groups. Each group consisted of fifteen mice. The control group was injected intraperitoneally with 1ml/kg b.wt. distilled water, the solvent of methotrexate, while treated group (1) was intraperitoneally injected with methotrexate 2.5 mg/kg b.wt., single dose at the first day of the experiment and sacrificed by cervical dislocation after 24, 48 and 72 hour of treatment, treated group (2) was intraperitoneally injected with methotrexate 5 mg/kg b.wt., single dose at the first day of the experiment and sacrificed by cervical dislocation after 24, 48 and 72 hour of treatment and treated group (3) was intraperitoneally injected with methotrexate 10 mg/kg b.wt., single dose at the first day of experiment and sacrificed by cervical dislocation after 24, 48 and 72 hour of treatment.

Results of the present study indicated that the three tested doses of methotrexate induced structural and numerical chromosomal aberrations in bone marrow cells of the treated mice which were highly significant increased (P < 0.001) by dose and time of treatment. Structural aberrations were chromosomal and chromatid gap, fragment, centromeric attenuation, deletion, centric fusion, ring formation, end to end association and beaded chromosomes. While, numerical aberration was in the form of polyploidy.

Also, methotrexate treatment decreased the mitotic index in bone marrow cells of treated mice with 2.5, 5, 10 mg MTX/kg b.wt. and after 24, 48 and 72 hour of treatment in comparison with the control by increasing dose and time of treatment. A little different average of percentages of mitotic indices (18 % & 14 %) was observed between control & group 1 after 24 hr of treatment, respectively and a highly elevated average of percentages of mitotic indices (18 % & 1.2 %) was observed between the control and group 3 after 72 hr of treatment, respectively.

Micronucleus assay results showed that methotrexate treatment induced genotoxicity in bone marrow cells and the number of micronucleated polychromatic erythrocytes (MNPCEs) was gradually increased significantly (P < 0.001) by the increase of dose and time in treated groups with methotrexate when compared to the control one. Also, cytotoxicity test showed that the ratio polychromatic erythrocytes/normochromatic erythrocytes was gradually increased

significantly (P < 0.001) by the increase of dose and time in treated groups with methotrexate when compared to the control one.

The current results of comet assay indicated that treatment with methotrexate significantly (P < 0.001) increased DNA damage in the blood leukocytes in dose and time dependent manner.

Results of randomly amplified polymorphism DNA-polymerase chain reaction (RAPD-PCR) analysis showed different range of DNA modifications in the methotrexate treated groups after 24, 48 and 72 hour of treatmet in comparison with untreated control.

Results of the present study indicated that methotrexate treatment induced genotoxic effect on bone marrow chromosomes and DNA content of male albino mice even after a low dose and single treatment. Therefore, the therapeutic uses of methotrexate should be restricted to a very narrow range border.

Key words: Methotrexate, Mice, Chromosomes, DNA, RAPD-PCR, Comet assay, Micronucleus.

Contents

Title	page
LIST OF TABLES	I
LIST OF FIGURES	1I
LIST OF ABBREVIATIONS	1
1.INTRODUCTION	1-7
AIM OF THE PRESENT WORK	8
2.REVIEW OF LITERATURE	9-46
2.1. General effects of methotrexate	9-18
2.2.Genotoxic effect of methotrexate on the chromosomes	19-33
2.3.Genotoxic effect of methotrexate on DNA content	34-46
3.MATERIALS AND METHODS	47-75

3.1.Experimental Animals	47
3.2.Cages and water bottles	47-48
3.3.Drug used	48-49
3.4.Experimental Design	49-50
3.5.Preparation of bone marrow chromosomes	51-53
3.6.Micronucleus test	54-55
3.7.Comet assay	56-66
3.7.1. Requirements	56-57
3.7.2. Preparations of reagents	58-61
3.7.3. Protocol for single cell gel electrophoresis (SCGE)	61
3.7.4. Procedure for collecting blood sample	61
3.8.5. Procedure for separation of lymphocytes	61
3.7.6. Procedure for preparation of slides	62

3.7.7. Preparation of agarose	62
3.7.8. Pre-coating of agarose	62
3.7.9. Layering of lymphocyteLMPA gel mixture	63
3.7.10. Procedure for lysis of lymphocyte	64
3.7.11. Procedure for alkaline unwinding and electrophoresis of slides	64
3.7.12. Procedure for neutralization	65
3.7.13. Visualization and analysis of Comet Slides	65-66
3.8.Random amplified Polymorphic DNA (RAPD-PCR)	67-74
3.9.Statistical Analysis	75
4.RESULTS	76-225
4.1.The chromosomes	76
4.1.1. Karyotype of the male albino mice	76-78

≡

4.1.2. Effect of methotrexate on bone marrow chromosomes	81
4.1.2.1. Chromosome type aberrations	82
4.1.2.1.1. Structural aberrations	82
4.1.2.1.1.1. Chromatid aberrations	82
4.1.2.1.1.1. Deletion (D)	82
4.1.2.1.1.2. Fragments (F)	83
4.1.2.1.1.2. Chromosomal aberrations	95
4.1.2.1.1.2.1. Centromeric attenuation (Ca)	95
4.1.2.1.1.2.2. Gaps (Cg,Chg)	96
4.1.2.1.1.2.3. Centric fusion (Cf)	108
4.1.2.1.1.2.4. Ring form (R)	109
4.1.2.1.1.2.5. Beaded chromosomes (Bch)	110
4.1.2.1.1.2.6. End to end association (Ee)	111
4.1.2.1.2. Numerical aberrations	123
4.1.3.The mitotic index	134
4.2.Results of the micronucleus assay and cytotoxicity test	138
4.2.1. The micronucleus assay	138

≡

4.2.2. The cytotoxicity test (PCE/NCE ratio)	157
4.3.Effect of methotrexate on DNA content	161
4.3.1. Results of comet assay	161
4.3.2. Results of randomly amplified polymorphic DNA (RAPD) analysis	175
4.3.2.1. Primer OPA-07	175
4.3.2.2. Primer OPA-10	183
4.3.2.3. Primer OPA-14	190
4.3.2.4. Primer OPB-20	197
4.3.2.5. Primer OPC-05	204
4.3.2.6. Primer OPC-07	211
4.3.2.7. Primer OPE-07	218
5.DISCUSSION	226-264
5.1.The chromosomes	227
5.1.1. Chromosomal aberrations	229
5.1.2. Micronucleus test	244
5.2.The DNA content	251

≡

5.2.1. The comet assay	251
5.2.2. Randomly amplified polymorphic DNA (RAPD) analysis	257
6.SUMMARY AND CONCLUSION	265-269
7.REFERENCES	270-339
ARABIC SUMMARY	6-1

List of Tables

Table No.	Title	Page
Table (1)	List of primers code and sequences	73
Table (2)	The mean and standard deviation of chromosomal aberrations in metaphases cells of male albino mice <i>Mus musculus</i> after 24. 48, and 72 hours of treatment with methotrexate 2.5 mg/kg b.wt. (Group 1) and the control group.	93
Table (3)	The mean and standard deviation of chromosomal aberrations in metaphases cells of male albino mice <i>Mus musculus</i> after 24. 48, and 72 hours of treatment with methotrexate 5 mg/kg b.wt. (Group 2) and the control group.	106
Table (4)	The mean and standard deviation of chromosomal aberrations in metaphases cells of male albino mice <i>Mus musculus</i> after 24. 48, and 72 hours of treatment with methotrexate 10 mg/kg b.wt. (Group 3) and the control group.	121

Table (5)	The relationship between the mean of chromosomal aberrations of male albino mice in all treated groups with methotrexate (groups 1, 2 and 3).	128
Table (6)	The relationship between the mean of total chromosomal aberrations of all treated groups with methotrexate (groups 1, 2 and 3) after 24, 48 and 72 hours of treatment.	130
Table (7)	The relationship between the mean of total aberrations for all types of chromosomal aberrations and all treated groups with methotrexate (groups 1, 2 and 3).	132
Table (8)	Mitotic index (MI) in 1000 bone marrow cells for each experimental group and its percentage after 24, 48 and 72 hour of treatment with 2.5, 5 and 10 mg/kg b.wt. of methotrexate and the control group.	136
Table (9)	The mean and standard deviation of polychromatic erythrocytes (PCEs), micronucleated-polychromatic erythrocytes (MNPCEs), normochromatic erythrocytes (NCEs) and cytotoxicity in bone marrow of male albino mice <i>Mus musculus</i> of the control group and treated groups.	155