The possible role of fungi in the pathogenesis of nasal polyposis and the role of antifungal agents in its management

Thesis

Submitted for Partial fulfillment of M.D. Degree in Otorhinolaryngology

Presented by

Alaa Eldein Eissa Elsayed Mohamed

M.B.B.Ch, M.Sc. Otolaryngology

Supervised by

Prof. Dr. Nabil Abd El Razek Rabie

Prof. and Head of Otolaryngology Department Ain Shams University

Prof. Dr. Mohamed Abd El Azim El-Begermy

Prof. of Otolaryngology Ain Shams University

Prof. Dr. Afaf Shaaban Abd El Rahman

Prof. of Microbiology Ain Shams University

Dr. Samer Ahmed Ibrahim

Assist. Professor of Otolaryngology Ain Shams University

Dr. Amr Gouda Shafik

Lecturer of Otolaryngology Ain Shams University

Faculty of Medicine Ain Shams University 2006

Acknowledgments

First, I would like to thank, after Allah, Professor Dr. Nabil A. Rabie, Professor of Otolaryngology and head of Otolaryngology department of Ain Shams University for his instructions and perfect supervisions all over this work.

Second, I would like to thank Professor Dr. Mohamed A. El-Begermy, Professor of Otolaryngology, he is the one who create the idea of the study, he was instructing me in every step and to him I am so grateful because he improved my operative experience, beside my research abilities.

Third, I am much grateful to professor Dr. Afaf S. Abd El-Rahman, Professor of Microbiology, who supervised me in all the mycological part of the study, she markedly improved my experience in this field.

Fourth, I would like to thank Dr. Samer A. Ibrahim, Assist. Professor of Otolaryngology for his great effort in supervising me step by step. I have taken much benefits from his experiences.

Fifth, I am also grateful to Dr. Amr G. Shafik, Lecturer of Otolaryngology for his effort and his instructions.

My thanks go also to all the staff of Otolaryngology in Ain Shams university for their help and facilitations.

Alaa Eldein E. E. Mohamed

Contents

Introduction	1
Aim of the work	4
Review of literature	5
Incidence	6
Etiology	11
Dynamics Of Histopathology	20
Fungal Rhinosinusitis	29
Treatment	56
Recurrence	69
5. Patients and methods	72
6. Results	82
7. Discussion	127
Suggestive New Theory	135
8. Conclusion	139
9. Summary	140
10. References	144
11. Arabic summary	

Abbreviations

AE : anterior ethmoid.

AFS : allergic fungal sinusitis.

Asp flav : Aspergillus flavus.

Asp fum : Aspergillus fumigatus.

Asp nig : Aspergillus niger.

Cand : Candida albicans.

CF : cystic fibrosis

CT : Computed tomography.

Dem : Dematiaceous fungi.

Disc : nasal discharge.

EFRS : Eosinophilic fungal rhinosinusitis

EMRS : Eosinophilic mucin rhino sinusitis

Fr : frontal sinus.

GM-CSF : Granulocyte-macrophage colony-stimulating

factor

Head. : headache.

HSD : hypertrophic sinus disease.

ICAM-1 : Intercellular adhesion molecule-1.

IgE : immunoglobulin E.

IL : Interleukin.

Irr. : nasal irritation.

LFA-1 : Lymphocyte function associated antigen-1.

Mx : maxillary sinus.

NAFRS : Non-allergic fungal rhinosinusitis

NC : nasal cavity.

NSAID : non steroid anti inflammatory drugs.

Obs. : nasal obstruction.

OD : a dose once daily.

Olf : olfactory disturbance.

Oper. find : operative finding.

PE : posterior ethmoid.

PO : oral medicine.

Prev. oper. : previous operation.

QID : a dose four times daily.

RAST : Radio-allergo-sorbent test.

Recur. : recurrence.

SAEs : Staphylococcus aureus enterotoxins.

Sp. : sphenoid sinus.

TNF-a : Tumor necrosis factor-alpha.

VLA-4 : Integrins A4.

VCAM-1 : Vascular cell adhesion molecule-1.

Tables index

Table	Page	
Table R. 1: Frequency of nasal polyps in three screening method	s on	
consecutive autopsies.	9	
Table R. 2: Origination of nasal polyps in 18 autopsy cases.	9	
Table R. 3: Frequency of nasal polyps in three screening methods	son	
consecutive autopsies.	10	
Table R. 4: Classification of fungal rhinosinusitis.	31	
Table R. 5: Signs and symptoms seen with fungal infections.	31	
Table R. 6: Increased susceptibility to invasive fungal infections	. 31	
Table R. 7: Endoscopic finding present during fungal infection.	31	
Table M 1 : Patients groups.	73	
Table M 2: Pre operative conventional medical treatment.	74	
Table M 3: Postoperative antifungal treatment.	74	
Table 1: Comparison of age distribution among different groups.	83	
Table 2: Comparison of the sex distribution among the different		
groups.	83	
Table 3: Symptoms comparison among different groups.	85	
Table 4: Clinical findings in the different groups.	86	
Table 5: Degree of involvement of sinusitis in CT scan for A&B.	88	
Table 6: Degree of involvement of sinusitis in CT scan for group D89		
Table 7: Score in groups A&B patients.	90	
Table 8: Skin prick test results for the groups.	91	
Table 9: Cases of positive Skin prick test among patients of nasal		
polyposis.	92	
Table 10: Surgical findings.	93	
Table 11: Comparison between groups in culture results.	95	
Table 12: Comparison between the three groups for the types of f	ungal	
growth. 96		
Table 13: Correlation between fungal culture results and skin test	for	
fungi.	98	
Table 14: Recurrence rates in the current study.	101	
Table 15: Appendix for history, clinical exam. And skin test.	115	
Table 16: Appendix for the patients CT, fugal growth, operative		
finding, antifungal agent given and recurrence.	118	

Figures index

Figure	page
Figure 1: diagram of the overlapping role of selectins, chemoattractar	ıts,
and integrin in leukocyte attachment, rolling, firm adhesion,	and
extravasations.	28
Figure 2: A B C D E& F represent CT scan of a case of AFS. The patient	
face shows nasal broadening and proptosis.	103
Figure 3: A B C D & E represent the follow up after operation, no	
recurrence of nasal polyposis in the CT scan after 9 months.	104
Figure 4: A B C D E & F represent the CT scan of a case of bilateral	
simple polyposis.	105
Figure 5: A B C D E & F represent the follow up of the previous case.	
The CT scan sections show marked improvement.	106
Figure 6: A B C D E & F represent a case of nasal polyposis associated	
bronchial asthma and salicylate intolerance.	107
Figure 7: A B C D E & F represent the follow up of the previous case after	
only six months shows massive recurrence.	108
Figure 8: A B C D E & F represent a case of AFS with nasal polyposis	
(bilateral).	109
Figure 9: A B C D E& F represent the post operative CT scan of the	
previous case after 6 months shows thickening in the mucosa of	
maxillary sinuses but there is no recurrence of polyposis.	110
Figure 10: A B C D E & F represents a CT scan of case of chronic	
rhinosinusitis + polyps + bilateral large concha bullosa. No	111
recurrence in the follow up.	111
Figure 11: A& B Candida albicans (microscopic picture).	112
Figure 12: Aspergillus fumigatus culture. Figure 13: Aspergillus flavus culture.	113
Figure 14: Aspergillus niger culture.	113
Figure 15: Dematiaceous fungi (microscopic picture).	114
Figure 16: A diagram illustrating the suggestive new theory.	138
rigure 10. 11 diagram musuamig the suggestive new theory.	150

INTRODUCTION

Nasal polyposis is an inflammatory condition of unknown etiology. It results from chronic inflammation of the nasal and sinus mucous membranes which causes reactive hyperplasia that results in the formation of polyps. The precise mechanism of polyp formation is incompletely understood. Despite the great progress that had been made in the rhinology, it can be stated that neither the causal nor the formal pathogenesis of nasal polyposis has been clarified (*Larsen et al.*, 1992).

Although historically many have believed polyps to be a manifestation of allergy, in part because of the histological prominence of eosinophils, epidemiologic evidence for this is lacking. The incidence of allergy is not higher in patients with nasal polyps than in the population as a whole (*Lane and Kennedy, 2003*), nor do polyp patients have elevated rates of positive allergy skin tests (*Drake et al., 1984*).

Some authors now believed that all nasal polyposis are due to infection with fungus on the account that fungus was isolated in most cases, this may need a more accurate proof as fungus is present commensally in many parts of the body (*Lotfy and Wahab*, 2001).

Most of the patients who are presenting with nasal polypi, whether unilateral or bilateral turn out to have an

underlying fungal sinusitis (*Handoussa*, 2002). Allergic fungal rhinosinusitis is the most common form of fungal sinus disease and nasal polyposis is one of its five criteria of diagnosis (*Lane and Kennedy*, 2003).

In a study made on 19 patients who had chronic rhinosinusitis with polyposis, 21 % were diagnosed as allergic fungal sinusitis (*Abdel Rahman et al.*, 2001).

Allergic fungal rhinosinusitis is not caused by the abnormal presence of fungus in the nose but rather an abnormal response to non pathogenic fungi that exist in the environment (*Lane and Kennedy*, 2003).

Allergic fungal sinusitis has been clinicopathologically defined as non-invasive form of fungal infection. The underlying mucous membrane is intact. Erosion of the bone of the laminae papyracea, base of skull and posterior septum are often absent, and expansion of the involved sinus into the orbit or intracranial cavity is observed (*Handoussa*, 2002 and Madani and Shokohi, 2002).

Some authors consider that allergic fungal sinusitis, when diagnosed is absolute indication for surgery because it is not responsive to medical management without concomitant surgery (*Quraishi and Ramadan*, 1997). The reason for this is that the fungal elements must be removed to control the allergic response. The patient may have unilateral or bilateral disease. In cases of the former extent

of surgery should be limited to the side of involvement, partial surgery in this situation is unlikely to be lasting benefit (*Marks*, 2000). Owing to re-exposure to the inciting organism, the pathogenic process is not curable and, despite initial excellent result, eventual relapse is likely (*Kuperferberg et al.*, 1997). For this reason other authors consider that complete endoscopic spheno-ethmoidectomy with wide middle meatus antrostomy and frontal sinusotomy, is warranted in most cases (*Marks*, 2000).

Overall, the mechanisms behind polyp formation are believed to be multifactorial. Recent evidence suggests an important role for proinflammatory cytokines, chimokines, and chemotactic factors in the pathogenesis of inflammatory polyps (*Lane and Kennedy*, 2003), along a variety of environmental, genetic, and biochemical factors that have previously been proposed (*Shin et al.*, 2000).

Albu et al. (2004) stated that patients presenting NSAID intolerance or asthma are at risk for the development of recurrences after endonasal surgery for nasal polyposis.

Aim of the work

- 1- To determine the incidence of fungal sinusitis among the patients of nasal polyposis.
- 2- To study the role of fungi in the etiology of the nasal polyposis.
- 3- To study the effect of antifungal treatment in prevention of recurrence nasal polyposis after surgical removal.

Review of literature

Nasal polyps can be defined as mucosal sacs containing edema, fibrous tissue, vessels, inflammatory cells, and glands. Although endoscopic and microscopic surgical techniques have been popular treatment methods for nasal polyps in recent years, there has been less attention given to the origin of nasal polyps (*Selner*, 1988).

However, as far as 1882, Zuckerkandl pointed out that the nasal polyps most commonly originated from the lateral nasal wall in the region of the ethmoidal clefts (*Zuckerkandl*, 1882).

Nasal polyposis represents a chronic inflammatory disease of the lateral wall of the nose and the anterior ethmoidal air cell. In the last decade, a truly significant effort has been made to understand the pathogenesis, growth, persistence, and recurrence of nasal polyps (*Mygind and Lildholdt, 1977*).

The condition of nasal polyposis has been an enigma in the recorded history of mankind. It is found in a wide number of diseases and has varied histological components determined by the basic disease state. Thus, it may represent a common pathologic end point in a number of disease processes and offers a spectrum of severity ranging from discrete localized lesions to massive diffuse mucosal change, producing significant facial deformity (Bernstein, 2001 and Settipane et al., 1977).

The history of nasal polyps goes back for a period of over 4,000 years to ancient Egypt. This condition may perhaps be the earliest disease on record for which we know the name of both the patient and the physician (*Bernstein* 2001).

INCIDENCE

There are many studies to evaluate incidence of occurrence of nasal polyposis in chronic rhino-sinusitis patients or in autopsies.

Site of origin

By surgical investigation, *Stammberger* (1991) evaluated the site of nasal polyps in reported 200 consecutive patients underwent functional endoscopic sinus surgery. He noted that in 80% of patients there were polyps originated from the middle meatal mucosa, uncinate process, and infundibulum. In 65%, polyps originated from the ethmoidal bulla and hiatus semilunaris. In 48%, polyps originated from the frontal recess. Polyps were found inside the ethmoidal bulla in 30%.

By autopsy evaluation, *Larsen and Tos* (2001) evaluated the origin of nasal polyps in three cadaveric studies [Table R. 1]. In the first study, conventional anterior rhinoscopy was performed for 300 autopsies and nasal

polyps were noted in six nasoethmoidal specimens (*Larsen and Tos*, 1991). In the second study, the nasoethmoidal complex was removed transcranially in 19 autopsy specimens and examined directly; anterior rhinoscopy was not performed. Polyps were found in 5 of 19 specimens, a frequency of 26% (*Larsen and Tos*, 1995 and *Larsen et al.*, 1994). In the third study, 31 autopsy specimens were evaluated with endoscopic dissection. Polyps were noted in 13 of 31 (42%) specimens (*Larsen and Tos*, 1996).

Important characteristics of nasal polyps were noted in the aforementioned studies. Polyps were found mainly in the transition space between the nose and sinuses. It was found that 75% of polyps were related to ethmoidal recesses and clefts [Table R. 2]. Most of the polyps were unilateral [63%], and bilateral nasal polyps were found in 37% of the cadavers [Table R. 3] (*Larsen and Tos*, 2001).

Continuous postmortem studies in autopsy materials and systematic endoscopic examinations for silent, asymptomatic nasal polyps in various groups of patients indicate that the frequency of nasal polyps is high and most of the polyps originate from the mucosa of the ostia, clefts, and recesses in the ostiomeatal complex where the initial stage of sinonasal polyposis seems to take place (*Larsen and Tos*, 2004).

The high frequency of nasal polyps seems to show that nasal polyps often are small and do not always reach a