CURING EFFICIENCY OF DIFFERENT POLYMERIZATION TECHNIQUES IN RELATION TO MARGINAL CONTRACTION GAP OF COMPOSITE RESTORATIONS

Thesis

Submitted to the Conservative Dentistry
Department, Faculty of Dentistry
Ain Shames University
In Partial Fulfillment of the Requirement for
The Master Degree in Restorative Dentistry

By
Usama Mohamed Abd El-AAL

B.D.S

(Mansoura University)

2008

Supervisors

Dr. Hisham Abd El-Wahab Mostafa

Professor of Operative Dentistry
Faculty of Dentistry
Ain shams University

Dr. Mostafa Kamal Mohamed

Professor of Physics Faculty of Science Mansoura University

2008

Dedication

To my dear loving Wife for her patience & support through out my work.

To my Sons who suffering too much.

Acknowledgement

First of all, I feel thankful to Allah for giving me the guidance and internal support until this study was completed.

I would like to express my deep appreciation to Dr.Hisham Abd-El wahab Mostafa professor of operative dentistry, faculty of dentistry, Ain Shams University, for his valuable constant encouragement, stimulating discussions, and keen supervision that he has kindly given to me throughout the research program, which was instrumental in achieving the completion of this study.

Iwould like to thank Dr. Mostafa Kamal Mohamed professor of physics, faculty of science, Mansoura University for his great help through the work.

I would like to express my heartfull thanks and deep gratitude to Dr.Nazam Abd-El Rahman professor of Statistics, faculty of agriculture, Mansoura university for helping me in the statistical analysis of data and presentation.

I am deeply indebted to Dr. Abo Baker El Bediey Lecturer of physics, Faculty of science, mansoura university, for his great help during measuring of surface microhardness of composite resin specimens.

List of Contents

	Page
* List of tables	I
\$ List of Figures	IV
* Introduction	1
* Review of literature	4
*Aim of study	68
❖ Materials and Method	69
* Results	83
❖ Discussion	115
❖ Summary and Conclusion	121
* Appendix	125
* References	137
❖ Arabic Summary	

List of Tables

Table	Page
Table (1):	Materials used in the study70
Table (2):	variables in the study81
Table (3):	variables interaction82
Table (4):	Mean gap-width scores of Tetric Ceram HB specimen utilizing different curing methods83
Table (5):	Mean gap-width scores of Tetric Ceram specimens utilizing different curing methods.
Table (6):	Mean gap-width scores of Tetric Flow specimens Utilizing different curing methods
Table (7):	Mean gap-width scores of three materials specimens cured by conventional technique87
Table (8):	Mean gap-width scores of three materials specimens cured by soft-start technique89
Table (9):	Mean gap-width scores of three materials specimens cured by pulse-delay technique90
Table (10):	Mean gap-width scores of three materials specimens cured by Argon-laser technique92
Table (11):	Means of Vickers hardness number in Tetric Ceram material specimens (bottomsurface) utilizing different curing methods93
Table (12):	Means of Vickers hardness number in Tetric Ceram HB material specimens (bottom surface) utilizing different curing method94

Table (13):	Means of Vickers hardness number in Tetric Flow material specimens (bottomsurface) utilizing different curing methods96
Table (14):	Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (bottom surfaces)that cured by conv. Technique
Table (15):	Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (bottom surfaces) that cured by Argon laser Technique99
Table (16):	Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (bottom surfaces)that cured by pulse-delay Technique
Table (17):	Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (bottom surfaces) that cured by soft start Technique
Table (18):	Means of Vickers hardness number in Tetric Flow material specimens (Top surface) utilizing different curing methods
Table (19):	Means of Vickers hardness number in Tetic Ceram HB material specimens (Top surface) utilizing different curing methods
Table (20):	Means of Vickers hardness number in Tetic Ceram material specimens (Top surface) utilizing different curing methods
Table (21):	Means of Vickers hardness number in T.C.HB,T.C, T.F Materials specimens (Top surfaces) that cured by conv. Technique
Table (22):	Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (Top surfaces)that cured by soft start Technique

Table (23):	Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (Top surfaces) that cured by pulse delay Technique
Table (24):	Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (Top surfaces) that cured by Argon laser Technique

List of Figures

Figure	Page
Figure (1):	The restorative materials used in the study
Figure (2):	The component parts of the mould of disc specimen
Figure (3):	The moulds used for construction of specimens
Figure (4):	Spectometer that used for measuring wavelength of light curing units
Figure (5):	radiometer that used for measuring light intensity
Figure (6):	Elipar high light curing unit77
Figure (7):	Argon laser curing unit78
Figure (8):	Packing of composite specimens78
Figure (9):	Stereomicroscope79
Figure (10):	Stereomicrograph of test specimen of TC HB cured with conventional technique
Figure (11):	Vicker microhardness Testor (FM-7)80
Figure (12):	Bar chart of Mean gap-width scores of Tetric Ceram HB specimen utilizing different curing methods83
Figure (13):	Bar chart of Mean gap-width scores of Tetric Ceram specimens utilizing different curing methods85

Figure (14):	Bar chart of Mean gap-width scores of Tetric Flow specimens Utilizing different curing methods
Figure (15):	Bar chart of Mean gap-width scores of three materials specimens cured by conventional technique
Figure (16):	Bar chart of Mean gap-width scores of three materials specimens cured by soft start technique
Figure (17):	Bar chart of Mean gap-width scores of three materials specimens cured by pulse delay91
Figure (18):	Bar chart of Mean gap-width scores of three materials specimens cured by argon laser technique
Figure (19):	Bar chart of Means of Vickers hardness number in T.C. specimens (bottom surface) that cured by different techniques94
Figure (20):	Bar chart of Means of Vickers hardness number in T.C.HB specimens (bottom surfaces) that cured by different techniques
Figure (21):	Bar chart of Means of Vickers hardness number in, T.F materials specimens (bottom surfaces) that cured by different techniques
Figure (22):	Bar chart of Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (bottom surfaces)that cured by conventional Technique 98
Figure (23):	Bar chart of Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (bottom surfaces)that cured by argon laser Technique 100

	Bar chart of Means of Vickers hardness number in
	T.C.HB,T.C, T.F materials specimens (bottom surfaces)that cured by pulse delay Techniqu101
,	Bar chart of Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (bottom surfaces)that cured by soft start Technique103
	Bar chart of Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (bottom surfaces)that cured by different techniques Technique
,	Bar chart of Means of Vickers hardness number in, T.F materials specimens (top surfaces)that cured by different techniques
,	Bar chart of Means of Vickers hardness number in, T.C HB material specimen(top surface) that cured by different techniques
	Bar chart of Means of Vickers hardness number in, T.C, materials specimens (top surfaces) that cured by soft start Technique
Figure (30) :	Bar chart of Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (top surfaces) that cured by conventional Technique
Figure (31) :	Bar chart of Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (top surfaces) that cured by soft start Technique
Figure (32) :	Bar chart of Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (top surfaces) that cured by pulse-delay Technique

Figure (33):	Bar chart of Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (top surfaces)that cured by argon laser Technique
Figure (34):	Bar chart of Means of Vickers hardness number in T.C.HB,T.C, T.F materials specimens (bottom surfaces)that cured by four different curing Techniques114

Introduction

Review of Literature

Aim of the Work