CHARACTERISTIC CHANGES IN US ECHOGENICITY, CT ATTENUATION AND MR IMAGING SIGNAL INTENSITY IN CHARACTERIZATION OF INFECTIOUS LIVER DISEASES.

Essay

Submitted for Partial fulfillment of the Master Degree in Radiodiagnosis

Presented by

Raghda Asaad Abdel-Wahab

M.B., B.Ch.

Faculty of medicine

Ain shams university

Supervisors

Prof. Dr. Mohsen Gomaa Hassan

Professor of Radiodiagnosis

Faculty of Medicine

Ain Shams University

Dr. Ahmed Mohamed Hussien

Lecturer of Radiodiagnosis

Faculty of Medicine

Ain Shams University

2012

Acknowledgment

First and foremost, thanks to Allah, to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. Mohsen Gomaa Hassan, for his sincere encouragement, constant advice and valuable guidance throughout the performance of this work.

I owe special gratitude to Dr. Ahmed Mohamed Hussien, for his close supervision and continuous advice which gave me the best guide during different stages of this work.

I would like to thank my professors, my husband, my family, my friends and my colleagues for their support and moral encouragement.

Raghda Asaad Abdel-Wahab

Contents

	Title Pag	ge
•	List of abbreviations	I
•	List of figures	IV
•	Introduction and aim of the work	1
•	Chapter 1:	
	- Anatomical consideration of liver	4
•	Chapter 2:	
	- Pathological consideration of infectious liver	
	diseases	29
•	Chapter 3:	
	- Technique of US, CT & MRI of liver	39
•	Chapter 4:	
	- Changes in US, CT & MRI in infectious	
	liver diseases	60
•	Summary and Conclusion	115
•	References	116
•	Arabic Summary	

List of Abbreviations

Acc: Accessory

ADC: Apparent diffusion coefficient

ALA: Amebic liver abscess

2D: Two-dimensional

CECT: Contrast enhanced computed tomography

CEUS: Contrast enhanced ultrasound

CHA: Common hepatic artery

CT: Computed tomography

3D: *Three dimensional*

DWI: Diffusion weighted imaging

FIESTA: Fast imaging employing steady state

acquisition

FISP: Fast imaging with steady-state precession

FLASH: fast low-angle shot

FOV: Field of view

GDA: Gastroduodenal artery

HA: Hepatic artery

HASTE: Half-Fourier acquisition single-shot turbo

spin echo

HAV: Hepatitis A virus

HBs Ag: Hepatitis B surface antigen

HBV: Hepatitis B virus

HCC: Hepatocellular carcinoma

HCV: Hepatitis C virus

HDV: Hepatitis D virus

HT: Hepatic trunk

HU: Hounsfield unit

IV: Intravenous

IVC: Inferior vena cava

LAVA: Liver acquisition with volume acceleration

LGA: Left gastric artery

MRCP: Magnetic resonance cholangiopancreato-

graphy

MRE: *Magnetic resonance elastography*

RES: Reticulo endothelial system

PLA: Pyogenic liver abscess

RPV: Right portal vein

RPPV: Right posterior portal vein

SMV: Superior mesenteric vein

SPAIR: Spectral presaturation attenuated inversion

recovery

List of abbreviations

SPIR: Spectral presaturation inversion-recovery

SSFSE: Single-shot fast spin echo

RHA: Right hepatic artery

SGE: Spoiled gradient echo

SI: Signal intensity

SMA: Superior mesenteric artery

SPIO: Super paramagnetic iron oxide

STEAM: Stimulated echo acquisition mode

T: Tesla

TE: Time of echo

TR: Time to repeat

VIBE: Volumetric interpolated breath-hold

examination

List of Figures

Figure number	Title	Page number
Fig. 1	Diagrammatic illustration of Diaphragmatic and visceral surfaces of the liver	6
Fig. 2	Diagrammatic illustration of visceral surface of the liver	8
Fig. 3	Diagrammatic illustration of the Posterior relations of liver	10
Fig. 4	Diagrammatic Illustration of hepatic segmental Anatomy	13
Fig. 5	Computerized tomography of the liver, using the vessels as landmarks to define the different segments	13
Fig.6	Diagrammatic illustration of hepatic lobule	14
Fig.7	Diagrammatic illustration of Arterial supply of the liver	15
Fig.8	Diagrammatic illustration of portal vein	18
Fig.9A	CT upper abdomen: Level of gastro- esophageal junction (T10)	20
Fig.9B	CT abdomen: level of body of stomach (T11)	21
Fig.9C	CT abdomen: level of body of pancreas (T12)	22
Fig.9D	CT abdomen: level of pancreatic head (L1)	23
Fig. 10	Coronal T1 MR Image shows relation of the liver to lower lung bases, heart as well as great vessels	24
Fig. 11	Coronal T2 MR image shows relation of the liver to lower lung bases, heart as	25

	well as great vessels	
Fig. 12A	T1-weighted spin echo MR image showing the hepatic veins course between the major liver segments	25
Fig.12B	T2-weighted spin echo MR image shows the hepatic veins as joining the IVC	26
Fig.12C	T1-weighted spin echo MR image, show right and middle hepatic veins and right portal vein branches	26
Fig.12D	T2-weighted spin echo MR image shows the liver parenchyma in compatrison to other structures	27
Fig.12F	T2-weighted sequence shows signal intensity of the liver parenchyma in comparison of signal intensity of the vessels	27
Fig.12H	T2-weighted sequence shows, gall bladder, duodenum, pancreas, and stomach	28
Fig. 13	Diagramatic illustration of Life cycle of Echinococcus species	34
Fig. 14A	Color Doppler sonogram shows main portal vein velocity measurement	41
Fig.14B	Color Doppler sonogram shows hepatic arterial velocity measuremen	41
Fig. 15A	Doppler sonogram show portal vein diameter	42
Fig.15B	Doppler sonogram show portal vein circumference	42
Fig. 16	Doppler US show different patterns of phacisity in hepatic veins.	42
Fig. 17	Coronal T2WI shows the entire abdomen	51

	Axial image of the porta hepatis by	
Fig. 18	using true fast imaging with steady-state	52
	precession	
E: ~ 10	DWI series obtained before and after	55
Fig. 19	contrast enhancement	55
E: 20	T1WI shows phases of dynamic	58
Fig. 20	contrast-enhanced hepatic imaging	
Fig. 21	US in Patient with acute hepatitis	61
Fig. 22	US of cirrhotic liver	61
	Ultrasound features of liver	(2)
Fig. 23	parenchymal texture	62
Fig. 24	Ultrasound features of the liver edge	63
Fig. 25	Sonographic patteren assosciated with	64
Fig. 25	cirrohsis.	04
Fig. 26	CT scan of cirrohtic liver	66
Fig. 27	Mixed micro- and macronodular	67
1 tg. 27	cirrhosis in an explanted cirrhotic liver	07
	Hepatic parenchymal alterations at	
Fig. 28	unenhanced MR imaging in a man with	
1 18. 20	HCV-related cirrhosis CT.	68
	Axial 3D T1-weighted spoiled gradient-	
Fig.29	echo images of the cirrhotic liver	69
	(Dynamic study)	
Fig.30	Ultrasonography of HCC	71
Fig.31	Triphasic CT scan of HCC	73
Fig.32	Dynamic MRI in 69-year-old man had	75
	moderately differentiated HCC	. 5
Fig.33	Dynamic MRI in 52-year-old woman	76
	had well-differentiated HCC	
Fig.34	Ultrasonography of Liver hydatid	79
	disease	
Fig.35	Ultrasonography shows a lesion with	80
3,11	mixed echogenicity, with hydatid sand	

	Ultrasonography of hydatid disease	
Fig.36	show multiple internal septa and	80
	floating membranes	
E: ~ 27	Ultrasonography of multivesicular	81
<i>Fig.37</i>	hydatid cyst	01
E; ~ 20	Ultrasonography of calcified hydatid	81
Fig.38	cyst	01
Fig. 20	CT scan of Calcified unilocular hydatid	82
Fig.39	cyst	02
Fig.40	CT scan shows hydatid (pericyst)	83
Fig.41	CT scan shows type II hydatid disease	84
Fig.42	CT scan shows type III hydatid disease	85
Fig.43	CT scan shows type IV hydatid disease	85
Fig.44	CT scan shows superinfection at	86
1 tg.44	partially calcified hydatid cyst	80
Fig. 15	CT scan shows complicated hepatic	86
Fig.45	hydatid cyst	80
Fig.46	T1WI & T2WI of Type II hydatid	88
1 18.40	disease	
	T2-weighted and post-contrast images	
Fig.47	show the exophytic growth of hydatid	89
	cyst (type II)	
	T2-weighted magnetic resonance image	
Fig.48	show the hydatid cyst that occupies	90
	almost the entire right lobe of the liver	
Fig.49	T2-weighted magnetic resonance image	90
1 ig.+)	show "snake sign"	70
Fig.50	T1WI & T2WI show infected hydatid	92
1 18.30	cyst	
Fig.51	T1WI & T2WI show a huge and	95
	multilocular hydatid cyst	
	Ultrasonography in 61-year-old man	_
Fig.52	with E. multilocularis infection of the	94
	liver	

Fig.53	Ultrasonography in 45-year-old woman with metastatic E. multilocularis infection	94
Fig.54	CECT shows hypodense central lesion representing necrotic tissue (E.multiloclaris)	96
Fig.55	Coronal contrast enhanced T1-weighted fat saturated image shows "geographical map". pattern, a characteristic-imaging feature of E.multiloclaris	96
Fig.56	Axial-unenhanced CT scan reveals large calcification with irregular margins in the liver, representing non vital final stage of E. multiloclaris	97
Fig.57	CECT reveals infiltration of the hepatic hilum by parasitic tissue	97
Fig.58A	3D MR cholangiogram shows multiple small nodular filling defects within the dilated bile ducts, representing metacestodal vesicles.	98
Fig.58B	Endoscopic retrograde cholangiogram confirm diagnosis of multiple intraductal cysts	98
Fig.59	Enhanced CT scan shows lobar atrophy (characteristic feature for alveolar echinococcosis of the liver)	98
Fig.60	Diagrammatic illustration of different patterns of portal fibrosis in schistosomiasis	100
Fig.61	Schistosomiasis. Longitudinal US image through the liver shows the characteristic US network pattern	101
Fig.62	Schistosomiasis. CT scan of the liver reveals characteristic pericapsular and	102

List of Figures

	periportal calcifications	
Fig.63	Different sonographic apperances of ALAs	104
Fig.64	CECT shows multiple hepatic microabscesses	105
Fig.65	CECT shows multiple hepatic abscesses	106
Fig.66	CECT shows unilocular ameboic liver abscess	107
Fig.67	Liver abscess.CECT shows homogenous hypodense non enhancing mass with thick capsule or wall	107
Fig.68	MRI of pyogenic liver abscess	108
Fig.69	US in immunocompromised patient shows hepatic candida lesions	109
Fig.70	Candidiasis. Contrast-enhanced CT scan of the liver shows multiple hypoattenuating microabscesses	110
Fig.71	Candidiasis. CECT shows small hypodense lesions within the hepatic dome.	111
Fig.72	Candidiasis. CECT shows numerous microabscesses with peripheral enhancement	111
Fig.73	Candidiasis. Axial T1-weighted MR image reveals relatively hyperintense lesions	112
Fig.74	CT scan of miliary hepatic tuberculosis.	114
Fig.75	CT scan of Hepatosplenic tuberculosis.	114

INTRODUCTION

Imaging has an important role in the diagnosis and follow-up of hepatic infections. In routine clinical practice, US, CT, and MR imaging may be used. Characteristic changes in US echogenicity, CT attenuation, or MR imaging signal intensity and typical enhancement patterns can contribute to the diagnosis of specific infectious diseases, including abscesses, parasitic diseases, fungal diseases, granulomatous diseases, viral hepatitis, and other less common infections (*Mortelé et al, 2004*).

In planning the therapeutic approach for patients who have or are suspected of having liver lesions, imaging is one of the major sources of information. Although ultrasonography (US) will depict most of the focal liver lesions, characterization of the nature of such lesions often depends on an additional imaging evaluation, sometimes followed by a histopathologic examination (*Matthijs Oudkerk et al, 2002*).

The two principal modalities for the additional imaging evaluation of the liver, computed tomography (CT) and magnetic resonance (MR) imaging, have undergone marked technical advances over the past few years (Matthijs Oudkerk et al, 2002).

CT is particularly helpful in revealing the presence of calcifications and gas and in detailing the enhancement pattern (*Mortelé et al, 2004*).

In patients suspected of having hepatic fungal infection, arterial phase CT depicts significantly more hepatic lesions than does CT performed during the other phases, and it reveals more lesions with enhancement patterns suggestive of infection. Arterial phase CT should be performed in

addition to portal venous phase CT in patients suspected of having hepatic fungal infection (*Metser et al*, 2005).

The multiplanar capability of MR imaging and its sensitivity to small differences in tissue composition increase its specificity for certain hepatic infections, including hydatid cyst and candidiasis (*Mortelé et al*, 2004).

Clinical MR imaging sequences for hepatic imaging continue to evolve at a fast rate. The three basic demands if MR imaging has been chosen for hepatic imaging are: improving parenchymal contrast, suppressing respiratory motion artifact, and ensuring complete anatomic coverage. To guarantee satisfactory consideration of these three basic demands, use of the advanced designs of T1-weighted and T2- weighted imaging sequences remains the greatest challenge in hepatic MR imaging (*Boll and Merkle*, 2009).

With the introduction of abdominal diffusion weighted imaging, a very promising tool for extraction of both qualitative and quantitative information from hepatic MR imaging series without the administration of exogenous contrast medium became available (*Boll and Merkle*, 2009).

The elasticity of liver parenchyma shows a strong correlation with degree of hepatic fibrosis and association with increased vascular resistance, as seen in elevated portal venous pressure. MR Elastography allows quantification of the viscoelastic property of the liver, in particular for assessment of hepatic fibrosis (*Boll and Merkle*, 2009).

AIM OF THE WORK

This essay is designed to demonstrate characteristic changes in US echogenicity, CT attenuation & MR imaging signal intensity in characterization of infectious liver diseases.