Evaluation of The Maximal Inspiratory Mouth Pressure In COPD Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Chest Diseases and Tuberculosis

By

Waleed Hussein Awad M.B.B.Ch

Supervised by

Prof. Muhammad Abd EL- Sabour Faramawy

Professor of Chest Diseases
Faculty of Medicine, Ain Shams University

Dr. Tamer Muhammad Ali

Lecturer of Chest Diseases
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams Universit

Y . . A

Acknowledgment

In the name of Allah, most gracious, most merciful. First of all I would like to thank Allah who enabled me to finish this research.

\ am deeply indebted to my supervisor; **Professor Muhammad Abd El Sabour faramawy**; Professor of

Chest diseases, Ain Shams University whose guidance and
instructions were invaluable.

I would like to express my gratitude to **Dr. Tamer Muhammad Ali**; Lecturer of Chest Diseases, Ain Shams

University for his help and patience all through the time of the research.

I forward my appreciation to all the staff of Chest department; Ain Shams University for tremendous efforts to help me to finish this research.

Finally, \ would like to thank all my family for their support, help and love.

Waleed Hussein Awad

.....

Contents

	Page
List of Abbreviations	_
List of Tables	
List of Figures	
Introduction and Aim of the Work	1
Review of Literature	
COPD	
Definition	
Epidemiology	
Risk factors	
Pathogenesis	
Pathphysiology	• • • • •
Pathology	
Diagnosis	
Management of stable COPD	
Systemic Manifestations of COPD	
Respiratory muscle dysfunction in COPD	
Assessment of Respiratory Muscles Strength	
• •	
Subjects and Methods	٩٤
Results	
\	• • • • •
•	
Discussion	
170	
Summary and Conclusion	
1 44	
Recommendations	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	•••••
References	
147	

Appendix	-
Arabic Summary	-

List of Abbreviations

ABG : Arterial Blood Gases.

ATS : American Thoracic Society. BAL : Bronchoalveolar lavage.

BLVR : Bronchoscopic lung volume reduction

BMI : Body-Mass Index.

BODE : Body-mass index, airflow Obstruction,

Dyspnea and Exercise capacity index

cmH^{\(\gamma\)} : Centimeter Water. CO : Carbon monoxide. CO^{\(\gamma\)} : Carbon dioxide.

COPD : Chronic Obstructive Pulmonary Disease.

COX : Cyclo-Oxygenase; CT : Computed tomography

DLCO : Carbon Monoxide Gas Diffusing Capacity

DNA : Deoxyribonucleic acid ECG : Electrocardiography

EGF : Epidermal Growth Factor

EMG : Electromyography

ERS : European Thoracic Society.

ET-\ : Endotheline-\.

FEV 7 : Forced Expiratory Volume after 7 s. FEV 9 : Forced Expiratory Volume in 9 s.

FGF : Fibroblast Growth Factor.FRC : Functional Residual Capacity.GINA : Global initiative for Asthma.

GM-CSF : Granulocyte Macrophage Colony Stimulating

Factor.

٣

GOLD : Global initiative for Chronic Obstructive Lung

Disease.

GRO: Growth-Related Oncogene.

HYOY : Hydrogen Peroxide.

HIV : Human Immune Deficiency Virus.

HS: Highly Significant.

List of Abbreviations (Cont.)

HT : Height.
IFN : Interferon.
IL : Interleukin.

IP-' : Activated protein-'.KCO : CO transfer coefficient.

kPa : Kilopascal. L· : Optimal length.

LPS : Lipopolysaccharides.

LT : Leukotriene.

LVRS : Lung volume Reduction Surgery.

M : Muscarinic.

MCP : Monocyte chemoattractant protein. MIP : Macrophage inflammatory protein.

MMHG : Millimeter Mercury.

MMP : Matrix metalloproteinase.mRNA : Messenger Ribonucleic Acid.

NE : Neutrophil Elastase.

NF- κB : Nuclear Factor- kabba B.

NK : Natural killer (cell).

NO : Nitric oxide.
NOY : Nitrogen dioxide
NS : Non Significant.

OY : Oxygen.

O_v : Superoxide anion.

O^r : Ozone

OH : Hydroxyl Radical.

PaCO[†] : Partial Carbon dioxide pressure.

PAF : Platelet Activating Factor.
PaO⁷ : Partial oxygen pressure.

Pdi,sn : Transdiaphragmatic pressure during sniff.

PEEP : Positive End-Expiratory Pressure.

List of Abbreviations (Cont.)

PEEPI : Intrinsic Positive End-Expiratory Pressure.

PEMAX : Maximum Expiratory Pressure.

Pes : Esophageal pressure.
PFT : Pulmonary function test.

PG : Prostaglandin. Pga : Gastric pressure.

Pga, co : Cough gastric pressures.

PGF^{\gamma}: Prostaglandin F^{\gamma}.

PI MAX : Maximum Inspiratory Pressure.

PI,di,max : Maximum static transdiaphragmatic pressure.

PiZZ : Homozygous phenotype of α AT.

Pmus : Pressure developed by the respiratory

Muscles.

Ppl : Pleural pressure.

Prs : Transrespiratory system pressure.
Pthmax : Maximum threshold pressure.
ROS : Reactive Oxygen Species.

RV : Residual volume.

SaO^Y : Arterial Oxygen Saturation.

SD : Standard Deviation.

SER CA : Sarco-Endoplasmic Reticulum Calcium-

Adenosine triphosphatase.

SLPI : Secretory Leukoprotease Inhibitor;SNIP : Sniff Nasal Inspiratory Pressure.

SOY: sulpher dioxide

TGF : Transforming Growth Factor.TIMP : Tissue Inhibitor of MMPs

TLC : Total Lung Capacity.

TNF α : Tumor Necrosis Factor Alpha.

VC : Vital capacity.

WT : Weight.

List of Table

Table	Subject	Page
١	Candidate genes in COPD	٦
۲	Stages of COPD	۲٩
٣	Therapy at each stage of COPD	٣٧
٤	Benefits of Pulmonary Rehabilitation in COPD	٤١
0	Characteristics of types of muscle fibers	٦١
٦	General comparison between controls and patients	1.1
٧	Comparison between Group \and and group \xi	1.7
٨	Comparison between Group Yand and group 5	1.5
٩	Comparison between Group Fand and group 5	١٠٤
١.	Comparison of Group \and and group \angle	1.0
11	Comparison of Group \and and group \angle	١٠٦
١٢	Comparison of Group ^۲ and and group ^۳	١٠٧
١٣	Comparison between COPD patients and controls as regards PImax values and PImax %	١٠٨
١٤	Comparison between group ' and group ' as regards PImax values and PImax %	1.9
10	Comparison between group 7 and group 5 as regards PImax values and PImax %	11.
١٦	Comparison between group ^r and group ^t as regards PImax values and PImax %	111
١٧	Comparison of PImax values among the patients	117

	with different grades of COPD severity	
١٨	Comparison of PImax % among the patients with different grades of COPD severity	115
19	Correlation between PImax values and anthropometric measures as well as smoking in COPD patients	

List of Table (Cont.)

Table	Subject	Page
۲.	Correlation between PImax and pulmonary function tests regarding FVC, FEV and FEV / FVC in COPD Patients	114
71	Correlation between PImax and arterial blood gases regarding PH, PaCO ^{\(\gamma\)} , PaO ^{\(\gamma\)} and (SaO ^{\(\gamma\)} %)	177

List of Figures

Fig.	Subject	Page
١	Inflammation in COPD	١.
۲	Protease-antiprotease imbalance in COPD	١٣
١	Oxidative Stress	١٤
۲	Metabolic pathways	٦٢
٣	Relationship of muscle and respiratory pressures at different lung volumes	۸١
٤	PImax values among the patients with different grades of COPD severity	117
0	PImax % predicted values among the Patient with different grades of COPD severity	110
٦	Relationship between smoking and PImax	119
٧	Relationship of FVC and PImax	119
٨	Relationship of FVC% predicted and PImax	17.
٩	Relationship of FEV and PImax	17.
١.	Relationship between FEV'% predicted and PImax	171
11	Relationship of FEV\/FVC % and PImax	171
17	Relationship between PH and PImax	١٢٣
١٣	Relationship between PaCO ^T and PImax	١٢٣
١٤	Relationship between PaO ^Y and PImax	١٢٤
10	Relationship between SaO ^Y % and PImax (Positive correlation)	١٢٤

.....

Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a preventable and treatable disease state characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and is associated with an abnormal inflammatory response of the lungs to noxious particles or gases. Worldwide cigarette smoking is the overwhelming risk factor for COPD, although in many countries, air pollution resulting from the burning of wood and other biomass fuels has also been identified as a COPD risk factor (GOLD, **·***Y).

Although COPD affects the lungs, it also produces significant extra pulmonary effects that may contribute to disease severity in individual patients (*Agusti*, **••**).

COPD is a major cause of chronic morbidity and mortality throughout the world; many people suffer from this disease for years and die prematurely from it or its complications. COPD is currently the fourth leading cause of death in the world and is predicted to be the third most frequent cause of death in the world by ''' (celli et al, '''').

COPD is associated with extrapulmonary effects that contribute to limit the exercise capacity of these patients and to worsen prognosis, independent - of their pulmonary function (*Oudijk et al*, *··**).

Clinical assessment of the global function of the respiratory muscles is often performed by measuring maximum inspiratory and expiratory mouth pressures (PImax and PEmax) (*MacNee*, **...)

Maximal inspiratory pressure (PImax) is the maximum negative pressure that can be generated from one inspiratory

1

effort, starting from functional residual capacity (FRC) or residual volume (RV) (ATS/ERS * · · *).

The mouth pressure recorded during these maneuver is assumed to reflect the respiratory muscle strength. (**Epstein et al.**, 1992)

It is known that a reduction of PImax has been associated with several neuromuscular diseases, but it is also possible to point up lower values in patients with chronic obstructive pulmonary disease (COPD) (Iandell et al, Y···)

The factors contributing to respiratory muscle weakness in many patients with COPD are: a) malnutrition related to biochemical, anatomical and physiological changes; b) muscular atrophy; c) steroid-induced myopathy; d) pulmonary hyperinflation with increased residual volume; e) reduced blood flow to the respiratory muscles and the measurement of PImax is indicated in any of these situations or when dyspnea or hypercapnia is not proportional to FEV1 reduction. (ATS/ERS 1999).

Aim of the Work

To evaluate the possible correlation between airway obstruction and the maximal inspiratory pressure (PImax) values and to describe PImax variation in the different stages of COPD according to GOLD criteria.

Chronic Obstructive Pulmonary Disease (COPD)

Definition:

The definition of COPD has been always a concern to chest physicians. It was changed several times from the first trials in 'A', when Laennec first described the pulmonary catarrh as an 'inf' ammation of the mucous membrane' of the bronchi and emphysema as an increase in the size of the airspaces in the lungs to the latest GOLD (global initiative for obstructive lung disease) definition (*Fletcher et al.*, **••***)

Chronic obstructive pulmonary disease (COPD) is a preventable and treatable with some significant extrapulmonary effects that may contribute to the severity in individual patients. Its pulmonary component is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lung to noxious Particles or gases. (*GOLD*, **.****/).

As it can be noticed, the most recent of definitions implies the most prominent risk factor, the spectrum of affection of the syndrome and a hint about the management.

Other attempts at defining COPD with reference to spirometric functional criteria were undergone e.g. The BTS functional definition; Chronic obstructive pulmonary disease (COPD) is characterized by airflow obstruction defined as a reduced forced expiratory volume in one second (FEV) and a reduced FEV1 / FVC Ratio (where FVC-is forced Vital capacity), such that FEV1 is less Than 1.7% predicted and FEV1 / FVC is less than 1.7%. The airflow obstruction is usually progressive, not fully reversible and does not change markedly over several months. The disease is predominantly caused by smoking. (BTS, 1.15)

It was always believed that COPD is comprised of two conditions namely: Chronic bronchitis and Emphysema. Chronic bronchitis is defined-clinically as chronic productive cough for months in each of tow successive years in patients in whom other causes of productive chronic cough have been excluded. Emphysema is defined pathologically as the presence of permanent enlargement of the airspaces distal to the terminal bronchioles, accompanied by destruction of their walls and without obvious fibrosis (*Snider et at*, 1910)

Lastly, a line must be drawn as sharp as possible between very Close entities to COPD: Bronchial asthma. Asthma is defined as a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role, in particular, mast cells, eosinophils, T lymphocytes, macrophages, neutrophils, and epithelial cells. In susceptible individuals, this inflammation causes recurrent episodes of wheezing, breathlessness, chest tightness, and coughing, particularly at night or in the early morning. These episodes are usually associated with widespread but variable airflow treatment. The inflammation also causes an associated increase in the existing bronchial hyperresponsiveness to a variety of stimuli. (GINA, Y··V)

Asthma differs from COPD in its pathogenic and therapeutic response, and should therefore be considered a different clinical condition. The high prevalence of asthma and COPD in the general population results in the coexistence of both disease entities in many individuals. Asthma is characterized by significant airflow limitation and a large response to bronchodilators. In COPD patients, the forced expiratory volume in one second (FEV) does not return to normal and frequently worsens over time. There is a great need to design studies aimed at determining the prevalence, natural history, clinical course and therapeutic response in these patients (*Thomson et al.*, **••**).

Some patients with asthma develop poorly reversible airflow limitation. These patients are indistinguishable from patients with COPD but for practical purposes are treated as asthma (*Pawels*, **.**).

Epidemiology

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide, and results in an economic and social burden that is both substantial and increasing. COPD is the fourth leading cause of death in the USA and Europe. By the year '',', it is expected to rank among the first three diseases to claim the maximum number of lives. According to recent estimates, '', million people suffer from COPD all over the world. The disease claims '',' million lives every year. COPD mortality in females has more than doubled over the last '', yrs and this may be attributed to the fact that smoking rates are almost the same for men and women over the past ''-' years. (Halbert et al., ''').

COPD is a more costly disease than asthma. The direct costs of COPD are the value of health care resources devoted to diagnosis and medical management of the disease. Indirect costs reflect the monetary consequences of disability, missed work, premature mortality and caregiver or family costs resulting from the illness (Sullivan et al., **...*).

Risk factors

A)Host factors:

These are the minor part of the risk factors; and are caused mainly due to the genetic risk factor that is best documented, a severe hereditary deficiency of α '-antitrypsin (α ' AT) (a major circulating inhibitor of serum proteases). It is well-Known that the homozygous deficiency of α ' AT, phenotype PiZZ is associated with an increased risk of COPD. Also recent studies have shown that in the general population the contributory genetic factors seem to extend beyond the