STUDY OF RH BLOOD GROUP ALLOIMMUNIZATION IN EGYPTIAN **NEONATES WHO SUFFER FROM HEMOLYTIC** DISEASE OF THE NEWBORN

Thesis

Submitted for Partial Fulfillment of MD Degree in Clinical and Chemical Pathology **BY**

Ahmed Hamed Abd EL Halim

(M.B, B.Ch, M. Sc.)

Supervised By

Prof. Dr. Azza Aboul Enein Prof. Dr. Iman Seoud

Professor of Clinical and Chemical Pathology Professor of Pediatrics and Neonatology

Faculty of Medicine, Cairo University

Faculty of Medicine, Cairo University

Prof. Dr Osama Khalaf Allah

Professor of Clinical and Chemical Pathology Faculty of Medicine, Cairo University

> **Faculty of Medicine Cairo University** 2010

<u>Acknowledgement</u>

First of all and above all, I always feel indebted to ALLAH whose blessings can not be counted and who gave me the power to finish this Work.

I would like to express my deepest appreciation and gratitude to **Prof. Dr. Azza Aboul Enein** Professor of Clinical Pathology Faculty of Medicine- Cairo University for her wise guidance and kind support during this work.

I am also indebted to **Prof. Dr.Iman Seoud** Professor of Pediatrics and Neonatology Faculty of Medicine-Cairo University for her encouragement and close supervision.

Also I would like to thank **Prof. Dr Osama Khalf Allah** Professor of Clinical and Chemical Pathology Faculty of Medicine, Cairo University.

At this limit, I can't forget the great support from my wife who offered me the most suitable atmosphere to end this work.

Finally, I would like to dedicate this effort To my parents' soul, ALLAh have mercy upon them.

God Bless You All

Abstract

The Rh blood group system is one of the most polymorphic and immunogenic systems known in humans. In the past decade, intense investigation has yielded considerable knowledge of the molecular background of this system. The genes encoding 2 distinct Rh proteins that carry C or c together with either E or e antigens, and the D antigen, have been cloned, and the molecular bases of many of the antigens and of the phenotypes have been determined. A related protein, the Rh glycoprotein is essential for assembly of the Rh protein complex in the erythrocyte membrane and for expression of Rh antigens. The purpose of this review is to provide an overview of several aspects of the Rh blood group system, including the confusing terminology, progress in molecular understanding, and how this developing knowledge can be used in the clinical setting. Extensive documentation is provided to enable the interested reader to obtain further information. The Rh blood group system is the most polymorphic of the human blood groups, consisting of at least 45 independent antigens and, next to ABO, is the most clinically significant in transfusion medicine. The ability to clone complementary DNA (cDNA) and sequence genes encoding the Rh proteins has led to an understanding of the molecular bases associated with some of the Rh antigens. Serologic detection of polymorphic blood group antigens and of phenotypes provides a valuable source of appropriate blood samples for study at the molecular level. This review summarizes our present understanding of the complexities of Rh blood group expression and how this knowledge impacts on clinical situations that arise through Rh blood group incompatibility.

Key words:

- 1-Rh incompatibility
- 2- HDN
- **3-Jaundice**

List of Contents

ltem	Page
List of tables	
List of figures	
List of abbreviation	
Introduction	1
Aim of work	4
Review of litrerature:	
Chapter 1 Fetal and Neonatal Erythropoiesis	5
Chapter 2 Rh System	14
Chapter 3 Hemolytic Disease of Newborns	54
Materials and Methods	95
Results	108
Discussion	129
Conclusion	137
Recommendation	139
Summary	140
Reference	143
Arabic Summary	

List of Tables

Table No	Description	Page
Table 1	Antigens of the Rh Blood Group System and their incidence	17
Table 2	Determination of likely Rh Phenotypes from the results of tests with the Five Principal Rh Blood Typing Reagents	18
Table 3	The principal RH gene complexes and the antigens encoded	19
Table 4	Incidence of the more common genotypes in D+ve persons	22
Table 5	RhD Typing Reagents	50
Table 6	Comparison of Rh and ABO Incompatibility	71
Table 7	Guidelines for phototherapy in neonates with HDN	75
Table 8	Guidelines for exchange transfusion in neonates with HDN	76
Table 9	DG Gel Rh +Kell card results reading	100
Table 10	Serascan Diana 3 results reading	102
Table 11	Interpretation of Serascan Diana 3 results	103
Table 12	Results reading of Identisera Diana	106
Table 13	Interpretation of of Identisera Diana	106
Table 14	The flow of 518 cases with neonatal jaundice from February to August 2010	108

Table 15	The flow of 50 cases of HDN due to Rh incompatibility	109
	from February to August 2010	
Table 16	Sex and gestational age of 50 cases with HDN due to Rh	110
	incompatibility	
Table 17	Age on admission of 50 cases of HDN due to Rh	112
	incompatibility	
Table 18	The frequency of Rh incompatibility and other causes	112
	of HDN	
Table 19	The frequency of Rh phenotype Among 50 infants with	113
	HDN	
Table 20	The frequency of Rh phenotype in relation to ABO	113
1 4510 20	blood group	110
Table 21	Maternal and infant blood groups to Rh incompatibility	114
	cases	
Table 22	The frequency Kell positive cases in relation to gender.	116
Table 23	The frequency Rh phenotype according to Kell positive	116
	cases	
Table 24	CBC and Retics % of studied cases with Rh incompatibility	117
Table 25	Comparison of Line of treatment in Relation to Rh	118
	incompatibility	
Table 26	The outcome of 50 patients with Rh incompatibility in	119
	comparison to other 468 neonatal jaundice cases	
Table 27	The results of Antibodies screening in the mothers	120

Table 28	Total Results of 50 infants with Rh incompatibility	121
Table 29	Age, sex and CBC results	122
Table 30	Percentage of Rh incompatibility as a cause of HDN in different studies	136

List of figures

No.	Description	page
Figure 1	RHCE-RHD gene organization	23
Figure 2	Model of topology for RhAG, RhCE, and RhD Proteins	27
Figure 3	Proposed mechanism of acid/ammonium balance in the epithelium of the acid-secreting renal intercalated cells	29
Figure 4	Two types of multiprotein complexes in the red cell membrane	30
Figure 5-A	Lateral view of erythrocyte membrane	33
Figure 5-B	Top view of hexagonal spectrin network	33
Figure 6	Molecular basis of weak D phenotypes (Quantitative Weak D)	40
Figure 7	Conventional and variant RH genes	41
Figure 8	Localization of molecular defects on RhAG, the regulator type of Rh _{null} is associated with 2 mutant <i>RHAG</i> genes (homozygote or double heterozygote)	44
Figure 9	Liley curve. This graph illustrates an example of amniotic fluid spectrophotometric reading of 0.206	62
Figure 10	Modified Liley curve for gestation of less than 24 weeks	63

Figure 11	Queenan Curve: Modified Liley curve	63
Figure 12	Slopes for peak systolic velocity in middle cerebral artery (MCA)	82
Figure 13	A significant correlation observed between the concentration of RhD positive fetal RBCs and anti-D titer	93
Figure 14	DG Gel Rh +Kell card Result reading	101
Figure 15	Serascan Diana 3 Result reading	102
Figure 16	Results reading of Identisera Diana	105
Figure 17	The flow of 518 cases with neonatal jaundice from February to August 2010	109
Figure 18	The flow of 50 cases of HDN due to Rh incompatibility from February to August 2010	110
Figure 19	Sex of 50 cases with HDN due to Rh incompatibility	111
Figure 20	Gestational age of 50 cases with HDN due to Rh incompatibility	111
Figure 21	The frequency of Rh incompatibility and other causes of HDN	112
Figure 22	Rh Phenotype according to ABO blood group	114
Figure 23	Percentage of infant blood groups to Rh incompatibility cases	115

Figure 24	Percentage of Maternal blood groups to Rh incompatibility	115
Figure 25	The frequency Rh phenotype to Kell positive cases	117
Figure 26	Percentage of Phototherapy and exchange transfusion in patients with Rh incompatibility and other causes of HDN	118
Figure 27	Outcome of 50 patients with Rh incompatibility in comparison to other 468 neonatal jaundice cases	119
Figure 28	Rh phenotype for infants suffering from HDN	124
Figure 29	Rh phenotype for normal infants	125
Figure 30	Mothers' serum antibodies screen panel	126
Figure 31	Mothers' serum extend antibodies screen panel	127
Figure 32	D+ve mothers' serum extend antibodies screen panel	128
Figure 33	DAT of Rh incompatibility infants	128

List of Abbreviation

2,3- DPG 2, 3 Diphosphoglycerate.

AE1 Anion exchanger member 1.

AHG Antihuman globulin.

AS-1 Adesol-1 (Dextrose, Adenine, Mannitol and Sodium

Chloride).

Amts Ammonia Transporters.

ATP Adenosine Tri-Phosphate.

CDC The Centers for Disease Control and Prevention.

CMV Cytomegalovirus.

CP Cerebral Palsy.

CPDA-1 Citric Acid, Sodium Citrate, Monobasic Sodium

Phosphate, Dextrose, Adenine.

CUPH Cairo University Pediatric Hospital.

ECMO ExtraCorporeal Membrane Oxygenation.

ELBW Extremely Low Birth Weight.

EPO Erythropoietin.

ETCO End Tidal Carbon Monoxide.

FBS Fetal Blood Sampling.

FMH FetoMaternal Hemorrhage.

G6PD Glucose-6-Phosphate Dehydrogenase.

GPA Glycophorin A.

GPB Glycophorin B.

Hb Hemoglobin.

HDFN Hemolytic disease of fetus and newborn.

HDN Hemolytic disease of newborn.

HHy Hereditary Stomatocytosis /Hydrocytosis.

HIDA Hepatoiminodiacetic acid.

HIV Human Immunodeficiency Virus.

HPP Hereditary PyroPoikilocytosis.

IAP Integrin-associated protein.

IAT Indirect Antiglobulin Test.

ICAMs Intercellular adhesion molecules.

IPT Intraperitoneal transfusion.

IQR Interquartile range.

IUT Intrauterine transfusion.

IVIG Intravenous Immunoglobulin.

IVT Intravascular transfusion.

L/S ratio Lecithin/Sphingomyelin ratio.

MCA Middle cerebral artery.

MEP Methyl-Amine Permease.

MEPs Methyl-Ammonia Permeases.

NBTC National Blood Transfusion Center.

NH₃ Ammonia.

NH₄⁺ Ammonium ion.

NICU Neonatal Intensive Care Unit.

PUBS Percutaneous Umbilical Blood Sampling.

RBCs Red Blood Cells.

RCRL Red Cell Reference Lab.

Rh AG Rh Associated Glycoprotein.

RhCG Rh C glycoprotein.

RhoGAM Anti-D immunoglobulin.

rHuEPO Recombinant Human Erythropoietin.

SAO Southeast Asian Ovalocytosis.

SnMP Tin-mesoporphyrin.

TA-GVHD Transfusion-Associated Graft-vs-Host Disease.

TCB Trans- Cutaneous Bilirubin.

TSB Total serum bilirubin.

US Ultrasound.

VLBW Very Low Birth Weight.

WHO The World Health Organization.

Introduction «I. Aim of Work.