The effect of removal of the root canal filling material on the coronal leakage of two different obturating materials

(An in vitro study)

Thesis

Submitted to the Faculty of Dentistry

Ain Shams University

For

Partial fulfillment of requirements of the Master Degree in Endodontics

By

Omar Mortada Omar Mahmoud

B.D.S

(Faculty of Dentistry, Ain Shams University, 2003)

Supervisors

Prof. Dr. Salma El Ashry

Professor of Endodontics
Endodontic Department
Faculty of Dentistry, Ain Shams University

Dr. Shehab EL-Din Mohammed Saber

Assist. Professor of Endodontics

Endodontic Department

Faculty of Dentistry, Ain Shams University

بِسْمِ اللهِ الرَّحْمٰنِ الرَّحِيْمِ

﴿ قَالُوْا سُبْحَنْكَ لَا عِلْمَ

لَنَا إِلَّا مَاْ عَلَّمْتَنَا الْإِلَّا مَاْ عَلَّمْتَنَا الْإِلَّا مَا عَلَّمْتَنَا الْإِلَّا مَا عَلَمْ الْحَكِيمُ ﴾

أَنْتَ الْعَلِيمُ الْحَكِيمُ ﴾

صدَق اللهُ العَظِيْمُ

(الآية ٣٢ من سورة البقرة)

Dedication

To my great loving family

To my precious & lovely spouse

To my patients

Acknowledgment

I would like to express my deepest gratitude to *Professor Dr. Salma El Ashry*, Professor of Endodontics, Faculty of Dentistry, Ain Shams University for her kind guidance, patience, unlimited support, and for her extraordinary supervision and help during my academic and clinical work.

I would also like to thank and acknowledge the gracious and patient *Dr. Shehab El-Din Mohammed Saber*, Assistant Professor of Endodontics, Faculty of Dentistry, Ain Shams University with pride, gratitude, and admiration, for his outstanding guidance, generous contributions and priceless advice and help.

It was a privilege working under their supervision.

I would like to thank *Professor Dr. Ehab El-Sayed Hassaneen*, Chairman of Endodontic department, Faculty of Dentistry, Ain Shams University, and **all members of Endodontic department** for their valuable help and cooperation.

List of contents

List o	f figures	II
List o	f tables	V
Intro	duction	1-1
Revie	w of the literature	2-4
I-	Root canal filling materials	2-5
II-	Leakage of root canal filling materials	2-7
III-	Removal of root canal filling materials for	or post
	space preparation	-
Aim o	of the study	3-32
Mate	rials and Methods	4-34
Resul	ts	5-51
Discu	ssion	6-81
Sumn	nary and Conclusions	7-89
Refer	ences	8-93
A rahi	c Summary	9-103

List of figures

Figure no.		Page No.
1	Experimental design of the study.	4-38
2	E&Q plus pluggers.	4-40
3	Diagrammatic representation for components of the fluid filtration device.	4-45
4	Pressure gauge used to adjust the pressure of nitrogen gas.	4-48
5	T-junction connecting microtubing to micropipette.	4-48
6	T-junction connected to micro-syringe, micropipette, polyethylene tube.	4-49
7	Root segment cemented to the polyethylene tube filled with distilled water.	4-49
8	Nitrogen tank connected to the plastic beaker and sample unit.	4-50
9	Micro-syringe with an air bubble introduced into it.	4-50
10	A column chart showing mean leakage values (in µl/min) for samples of group (I) at the first observation period (1 day).	5-54

11	A column chart showing mean leakage values (in µl/min) for samples of group (I) at the second observation period (7 days).	5-55
12	A column chart showing mean leakage values (in µl/min) for samples of group (I) at the third observation period (21 days).	5-56
13	A column chart showing mean leakage values (in μl/min) for samples of group (II) at the first observation period (1 day).	5-59
14	A column chart showing mean leakage values (in µl/min) for samples of group (II) at the second observation period (7 days).	5-60
15	A column chart showing mean leakage values (in µl/min) for samples of group (II) at the third observation period (21 days).	5-61
16	A column chart showing the effect of time on mean leakage values in group (I).	5-64
17	A column chart showing the effect of time on mean leakage values in group (II).	5-67
18	A chart showing the effect of material on leakage of all subgroups at all time intervals.	5-69
19	A column chart showing the mean leakage values for all subgroups at the first observation period (1 day).	5-70
20	A column chart showing the mean leakage values for all subgroups at the second observation period (7 days).	5-70

21	A column chart showing the mean leakage values for all subgroups at the third observation period (21 days).	5-71
22	A chart showing the effect of obturation technique on mean leakage values in group (I) at all time intervals.	5-74
23	A column chart showing mean leakage values of subgroups in group (I) at the first observation period (1 day).	5-75
24	A column chart showing mean leakage values of subgroups in group (I) at the second observation period (7 days).	5-75
25	A column chart showing leakage values of subgroups in group (I) at the third observation period (21 days).	5-76
26	A chart showing the effect of obturation technique on mean leakage values in group (II) at all time intervals.	5-78
27	A column chart showing mean leakage values of subgroups in group (II) at the first observation period (1 day).	5-79
28	A column chart showing mean leakage values of subgroups in group (II) at the second observation period (7 days).	5-79
29	A column chart showing mean leakage values of subgroups in group (II) at the third observation period (21 days).	5-80

List of tables

Table		Page
no.		No.
1	Mean leakage values (in μl/min) for group (I) at the first observation period (1 day).	5-54
2	Mean leakage values (in μl/min) for group (I) at the second observation period (7 days).	5-55
3	Mean leakage values (in µl/min) for group (I) at the third observation period (21 days).	5-56
4	Mean leakage values (in μl/min) for group (II) at the first observation period (1 day).	5-59
5	Mean leakage values (in μl/min) for group (II) at the second observation period (7 days).	5-60
6	Mean leakage values (in µl/min) for group (II) at the third observation period (21 days).	5-61
7	The effect of time and statistical significance on the mean leakage values of group (I) with all obturation techniques.	5-63
8	The effect of time and statistical significance of differences between leakage values in group (I).	5-63
9	The effect of time and statistical significance on the mean leakage values of group (II) with all obturation techniques.	5-66

10	The effect of time and statistical significance of differences between leakage values in group (II).	5-66
11	The effect of filling material and statistical significance of differences between leakage values at all time intervals.	5-69
12	The effect of obturation technique and statistical significance on the mean leakage values of Group (I) at all time intervals.	5-73
13	The effect of obturation technique and statistical significance of differences between leakage values for group (I) at all time intervals.	5-73
14	The effect of obturation technique and statistical significance on the mean leakage values of Group (II) at all time intervals.	5-77
15	The effect of obturation technique and statistical significance of differences between leakage values for group (II) at all time intervals.	5-77

CHAPTER 1 INTRODUCTION

Adequate obturation of root canal system following intra canal preparation is a major step of endodontic treatment. The objectives of the root canal space obturation are to prevent leakage of microorganisms or nutrients from the oral cavity and the peroradicular tissues into the root canal system, and seal any microorganisms that could not be entirely removed during cleaning and shaping procedures.

A great deal of attention has been given to the evaluation of the sealing ability of the root canal filling materials, sealers, and associated obturation techniques. Various test methods have been used to evaluate the quality of seal, such as dye penetration and dye extraction methods, radioactive isotopes, bacteria and metabolites leakage tests, glucose leakage test, and the fluid filtration method.

Many materials have been advocated for obturation of root canal system. Gutta-percha has always been the material of choice for obturation of root canal system. It's considered to be the standard to which other root canal filling materials are compared. Recently, resin-based obturation systems, such as RealSeal and Epiphany, were introduced as an alternative to gutta-percha. Manufacturers of these systems claimed that they have a superior sealing ability compared to that of gutta-percha.

Removal of root canal filling materials to place dowels to restore a badly broken down endodontically treated tooth is a common clinical procedure. This procedure might affect the integrity of the obturating material jeopardizing its long term sealing ability. Therefore, conducting a study

1-3 | Introduction

to evaluate the effect of removal of different root canal filling materials on the coronal leakage was thought to be of value.

CHAPTER 2 REVIEW OF THE LITERATURE