

# بسم الله الرحمن الرحيم





شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



شبكة المعلومات الجامعية

# جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

### قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات



### يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار

في درجة حرارة من ٢٥-٥٠ مئوية ورطوية نسبية من ٢٠-٠٠ في درجة حرارة من ٢٥-١٥ مئوية ورطوية نسبية من ٢٠-٠٤%. To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الأصليــة تالفـه

# بالرسالة صفحات لم ترد بالاصل



### Role of Legendre Polynomial in Some Physical Problems

A thesis
Submitted in the partial fulfillment for
M.Sc degree in physics

By

Fatma Al-Zahra Mohamed Mohamed Ragab B. Sc (1998)

**Under supervision of** 

Hala Mahmoud Khalil

Assistant Professor of Theoretical Physics

**Manal Mahmoud Serag** 

**Lecturer of Theoretical physics** 

Physics Department
Women's College for Art, Science and Education
Ain Shams University

2002

التالح المراع

﴿ الحمد للله الذي هدانا لهذا ومأكنا لنهندي لولا أن هدانا الله

ربلات العظنيم

### Acknowledgment

The author would like to thanks *Dr. M.B.S. Osman* head of physics department for providing facilities during the period of this work.

Also thank to *Dr. Hala Mahmoud Khalil* for suggesting the problem and continuous supervision.

Many thanks to *Dr. Manal Mahmoud Serag* for assistance and helpful discussions.

Thanks for all members of physics department for kind cooperation

Fatma Mohamed Mohamed

### **List of Contents**

|                 |                                                                                   | Page |
|-----------------|-----------------------------------------------------------------------------------|------|
| List of Figures | 3                                                                                 | i    |
| English Summ    | nary                                                                              | 1    |
| Introduction    |                                                                                   | 2    |
| Chapter I:      | Special functions (Theoretical background)                                        | 7    |
|                 | <ul> <li>The gamma Γ function</li> </ul>                                          | 7    |
|                 | <ul> <li>Hermite function</li> </ul>                                              | 14   |
|                 | • Legendre function                                                               | 21   |
| Chapter II:     | Role of Legendre of polynomial in general equations of mathematical physics       | 22   |
|                 | General equations of     mathematical physics                                     | 22   |
|                 | <ul> <li>Separation of variables-<br/>ordinary differential equations</li> </ul>  | 23   |
|                 | Relation between Legendre operator and angular momentum operator                  | 29   |
|                 | <ul> <li>Solution of the eigen value eq.</li> <li>of Legendre operator</li> </ul> | 37   |
|                 | <ul> <li>Properties of the Legendre function</li> </ul>                           | 40   |
| Chapter III:    | Applications in some physical problems                                            | 49   |
|                 | 1.In scattering theory                                                            | 49   |

|                          | 2.In high energy                                | 49 |
|--------------------------|-------------------------------------------------|----|
|                          | 3.Particle in three-dimensional potential well  | 49 |
|                          | <b>4.</b> Shape oscillations of a liquid drop   | 50 |
|                          | 5.Earth's gravitational field                   | 51 |
|                          | 6.Sphere in a uniform field                     | 51 |
|                          | 7. Application in electrostatics                | 54 |
|                          | 8.Electron Orbital Motion and the Zeeman Effect | 61 |
|                          | Complex magnetic moment                         | 76 |
| References               | -                                               | 80 |
| Appendix<br>Arabic Summa | 257                                             |    |
| AFADIC SUITINA           | 11 V                                            |    |

\* \* \* \* \*

### **List of Figures**

|              |                                                                | Page |
|--------------|----------------------------------------------------------------|------|
| Figure (1):  | The factorial function and the first two derivatives of ln(x!) | 13   |
| Figure (2):  | The factorial function – extension to negative arguments       | 13   |
| Figure (3):  | Legendre polynomial for $L=0$                                  | 43   |
| Figure (4):  | Legendre polynomial for $L=1$                                  | 44   |
| Figure (5):  | Legendre polynomial for $L=2$                                  | 45   |
| Figure (6):  | Legendre polynomial for $L=3$                                  | 46   |
| Figure (7):  | Legendre polynomial for $L = 4$                                | 47   |
| Figure (8):  | Legendre polynomial for $L = 5$                                | 48   |
| Figure (9):  | Conducting sphere in a uniform field                           | 53   |
| Figure (10): | Electrostatic potential charge q displaced form origin         | 54   |
| Figure (11): | Electric dipole                                                | 58   |
| Figure (12): | Electric quadruple, electric octupole                          | 59   |

| Figure (13): | The vector angular momentum about the force center                                                                                                       | 61 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure (14): | Various possible elliptical motions                                                                                                                      | 62 |
| Figure (15): | <ul><li>(a) Current loop</li><li>(b) Bar magnet</li></ul>                                                                                                | 64 |
| Figure (16): | <ul><li>(a) Single transitions without an applied external magnetic field</li><li>(b) Five transitions with an applied external magnetic field</li></ul> | 69 |
| Figure (17): | Electron's orbital in a magnetic field B                                                                                                                 | 71 |
| Figure (18): | Orientation of the orbital angular momentum vector L for L=0,1,2,3,4                                                                                     | 72 |
| Figure (19): | Complex angular momentum                                                                                                                                 | 75 |
| Figure (20): | Complex magnetic moment                                                                                                                                  | 75 |

# **English Summary**

#### **Summary**

In this thesis a brief review of some special functions interesting in physics, such as  $\Gamma$ , Hermite, and Legendre functions.

In the introduction a historical review of associated Legendre polyamial, its responsibility of appearance of two quantum numbers L, m and their complex expressions.

In chapter I description of  $\Gamma$  function as Euler definition, Weirestrass and Factorial definitions.

Also description of Hermite polynomial, its application in harmonic oscillator problem.

In chapter II details of properties of Legendre polynomials; orthogonal, normalization; and how any function F(z) could be represented as a power series in terms of Legendre polynomial.

In chapter III a brief presentation of some applications of Legendre polynomial in physics, e.g. in scattering theory in high energy physics and gravitation.

We have chosen two examples to describe in detail.

One of them depends on the generating function of Legendre polynomial (in electromagnetic theory).

The other the Legendre polynomial does not appear explicitly, this is the Zeeman effect, where it could be explained by the idea of complex magnetic quantum number  $m=m_L\pm im_S$ .

# Introduction