

SYSTEM FREQUENCY TUNING FOR HEAVING BUOY WAVE ENERGY CONVERTERS

By

Ahmed Hamdy Abdelmaguid Sakr

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Mechanical Design and Production Engineering

SYSTEM FREQUENCY TUNING FOR HEAVING BUOY WAVE ENERGY CONVERTERS

By

Ahmed Hamdy Abdelmaguid Sakr

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in
Mechanical Design and Production Engineering

Under the Supervision of

Prof. Dr. Sayed M. Metwalli	Assoc. Prof. Yasser H. Anis	
•••••	•••••	
Professor Emeritus	Associate professor	
Mechanical Design and Production Engineering Department	Mechanical Design and Production Engineering Departmen	
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

SYSTEM FREQUENCY TUNING FOR HEAVING BUOY WAVE ENERGY CONVERTERS

By

Ahmed Hamdy Abdelmaguid Sakr

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Mechanical Design and Production Engineering

Approved by the Examining Committee:

Prof. Dr. Sayed M. Metwalli

Assoc. Prof. Yasser H. Anis

Advisor

Prof. Dr. Saad A. Kassem

Internal Examiner

Prof. Dr. Mustafa H. Arafa
The American University in Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 Engineer's Name: Ahmed Hamdy Abdelmaguid Sakr

Date of Birth: 26/08/1990 **Nationality:** Egyptian

E-mail: a.hamdy@cu.edu.eg **Phone:** +201063624828

Address: Faculty of Engineering, Cairo University

Registration Date: 1/10/2012 **Awarding Date:** //2018

Degree: Master of Science

Department: Mechanical Design and Production Engineering

Supervisors:

Prof. Dr. Sayed M. Metwalli Assoc. Prof. Yasser H. Anis

Examiners:

Prof. Dr. Mustafa H. Arafa (External Examiner)

The American University in Cairo

Prof. Dr. Saad A. Kassem (Internal Examiner)
Prof. Dr. Sayed M. Metwalli (Thesis Main Advisor)

Assoc. Prof. Yasser H. Anis (Advisor)

Title of Thesis:

System Frequency Tuning for Heaving Buoy Wave Energy Converters

Key Words:

Wave energy; Heaving; Buoy; Energy frequency; Reactive loading control

Summary:

In this thesis, we present a quick long-term reactive loading control for heaving buoy wave energy converter. The control is achieved by introducing an external continuous variable stiffness that is connected to the buoy to tune its natural frequency. The external stiffness is connected to the buoy through a continuous V-belt drive to change its effect on the buoy. This control maximizes the oscillation amplitudes; hence, maximizing the power absorption efficiency by achieving near-resonance operation. Analytical results show a promising power absorption increase as compared to other control techniques. Experimental results, for an equivalent vibrating system, prove the concept of the control operation.

Acknowledgements

I would like to express my deepest appreciation and gratitude to my supervisors, Prof. Dr. Sayed M. Metwali and Assoc. Prof. Yasser H. Anis, for their supervision of this work. I appreciate their continuous and invaluable academic support and belief in me as a researcher.

I would like to acknowledge my dear colleagues, Eng. Khalid M. Abdelaziz and Eng. Kirolos M. Henry, for their support in design and manufacturing of the experimental setup.

Dedication

This thesis work is dedicated to my wonderful parents who have been a constant source of support and encouragement during the challenges of graduate school and life.

Table of Contents

ACKNO	OWLE	DGEMENTS	i
DEDIC	ATION		ii
TABLE	OF CO	ONTENTS	iii
LIST O	F TAB	LES	vi
LIST O	F FIG	URES .	vii
NOME	NCLAT	TURE	i x
ABSTR	RACT		x iv
CHAP	ΓER 1:	INTRODUCTION AND LITERATURE REVIEW	1
1.1	BACK	GROUND	1
	1.1.1	Wave development	2
	1.1.2	Converters location	2
	1.1.3	Converter types	3
	1.1.4	Power take-off systems	5
	1.1.5	Control	9
1.2	LITE	RATURE REVIEW	10
	1.2.1	Reactive control theory	10
	1.2.2	Latching and declutching control theory	12
	1.2.3	Reactive loading control for heaving buoys	14
1.3	SCOP	E OF WORK	15
CHAP	ΓER 2:	MATHEMATICAL MODELLING	16
2.1	SEA S	STATE MODELLING	16
	2.1.1	Pierson-Moskowitz spectrum	16
	2.1.2	Pierson-Moskowitz spectrum calculations	18

	2.1.3	Irregular waves simulation	18
2.2	GOVE	ERNING EQUATION	21
2.3	RADI	ATION FORCE MODELLING	22
	2.3.1	Computation of hydrodynamic coefficients	23
2.4	EXCI	TATION FORCES MODELLING	24
2.5	STATI	E SPACE MODELING AND SOLUTION	25
	2.5.1	The approximation of a convolution integral by a state-space model	25
2.6	POWE	ER ABSORPTION AND EFFICIENCY	28
СНАРТ	ΓER 3:	SYSTEM TUNING	29
3.1	DESC	RIPTION OF THE CONTROLLER	29
3.2	MATE	HEMATICAL MODEL OF THE CONTROLLER MECHANISM	31
	3.2.1	The mechanical impedance of oscillating systems	31
	3.2.2	V-belt dimensions	32
	3.2.3	Sheaves running diameters	32
	3.2.4	Sheaves axial position	33
	3.2.5	Inertia effect of CVS mechanism	34
3.3	CONT	TROLLER OPERATING BANDWIDTH	34
3.4	OPTIN	MUM PTO DAMPING	36
	3.4.1	Radiation absorption	37
СНАРТ	ΓER 4:	ANALYTICAL AND EXPERIMENTAL RESULTS	39
4.1	SYST	EM ANALYTICAL RESULTS	39
	4.1.1	Excitation forces	39
	4.1.2	Regular waves	39
	4.1.3	Irregular waves	43
4.2	EXPE	RIMENTAL SETUP	46
	4.2.1	Exciter mechanism	48
	4.2.2	CVS mechanism	48
	4.2.3	CVS system speed ratio	48

4.3	EXPERIMENTAL RESULTS	51
CHAP	TER 5: CONCLUSION	55
REFE	RENCES	56
APPEN	NDIX A: ANALYTICAL SOLUTION ALGORITHMS	59
APPEN	NDIX B: EXPERIMENTAL SETUP DRAWINGS	83
APPEN	NDIX C: RANDOM TO DETERMINISTIC TRANSFORM	108
C.1	RANDOM TO DETERMINISTIC TRANSFORM	108
C.2	SOLUTION ALGORITHMS USING RANDOM TO DETERMINISTIC TRANSFORM	114

List of Tables

1.1	Comparison between different WEC types	8
3.1	Selected system parameters and V-belt dimensions	33
4.1	Experimental setup parameters	47

List of Figures

1.1	Surface waves generated by wind [1]	2
1.2	Attenuator WEC device:Pelamis [Pelamis Wave Power, UK] [2]	3
1.3	Terminator WEC device:Oyster [Aquamarine Power, UK] [3]	4
1.4	Point absorbers as an omnidirectional devices	4
1.5	Antenna effect of point absorber devices	4
1.6	Point absorber WEC device: Powerbuoy [Ocean Power Technologies, USA] [4]	
		5
1.7	Different PTO mechanisms [5]	6
1.8	Typical hydraulic circuit of WEC [5]	6
1.9	A schematic for a linear generator based on a permanent magnets [5]	7
1.10	Displacement of a heaving buoy WEC with latching control	10
	Layout of bottom-hinged pitching point absorber experimental setup	11
	Schematic for the tested OWC	13
1.13	Schematic for a PTO system with a hydraulic circuit	14
2.1	P-M Energy spectral density $S(\omega)$ at different wind speeds U	19
2.2	Peak frequency ω_m and Energy frequency ω_e at different wind speeds U	19
2.3	Significant wave height H_s at different wind speeds U	20
2.4	Available wave power P at different wind speeds U	20
2.5	Schematic representation of cylindrical heaving buoy WEC	21
3.1	Schematic representation of the control system installed on the heaving buoy	30
3.2	Schematic representation of the CVS sheaves	30
3.3	V-belt drive running diameters D_{α} and sheaves axial position S_{α} for the CVS	
	system in Table 3.1	33
3.4	Controller bandwidth	35
3.5	Wave energy frequency ω_e vs. wind speed U according to PM-spectrum	2.0
	calculations	36
4.1	Wave Excitation force amplitude $ \hat{F}_e $ at different wind speeds U	39
4.2	Amplification ratio AR at different PTO damping b in regular waves	40
4.3	Buoy velocity amplitude \dot{z} at different PTO damping b in regular waves	41
4.4	Average absorbed power P_{av} at different PTO damping b in regular waves .	41
4.5	Efficiency η and capture width λ at different PTO damping b in regular waves	42
4.6	Amplification ratio AR at different PTO damping b in irregular waves	43
4.7	Buoy velocity amplitude \dot{z} in RMS at different PTO damping b in irregular	
	waves	44
4.8	Average absorbed power P_{av} in RMS at different PTO damping b in irregular	
	waves	44
4.9	Efficiency η and capture width λ in RMS at different PTO damping b in	
	irregular waves	45
4.10	Schematic representation of the experimental model	46
	The experimental setup CAD model	47
4.12	The experimental setup	47

4.13	The exciter mechanism CAD model	8
	The controller mechanism CAD model	9
4.15	The controller mechanism	9
4.16	The sheaves shaft CAD model	0
4.17	The speed ratio Δ at different input excitation frequencies ω_e	0
4.18	Excitation input for Setting 1 at 15.71 rad/s	2
4.19	Displacement amplitude at different input excitation frequencies (Setting 1:	
	6.16 rad/s, Setting 2: 6.83 rad/s)	3
4.20	Output phase at different input excitation frequencies (Setting 1: 6.16 rad/s,	
	Setting 2: 6.83 rad/s)	3
4.21	Experimental steady state measurements for Setting 1 at 6.16 rad/s 5	
4.22	Experimental steady state measurements for Setting 1 at 6.83 rad/s 5	4
C .1	The deterministic quantity $y(t)$ magnitude at wind speed U of 10 m/s 10	8
C.2	The deterministic quantity $y(t)$ real part at wind speed U of 10 m/s 10	9
C.3	The deterministic quantity $y(t)$ imaginary part at wind speed U of 10 m/s 10	9
C.4	The DFT of the deterministic quantity $y(t)$ magnitude at wind speed U of 10	
	m/s	0
C.5	DFT for the time domain signal calculated by the irregular simulation method	
	Eqn.(2.15) at wind speed U of 10 m/s $\dots \dots \dots$	1
C.6	Buoy displacement at wind speed U of 10 m/s at PTO damping b of 0.5 kN.s/m11	1
C.7	Buoy displacement at wind speed U of 10 m/s at PTO damping b of 1 kN.s/m 11	
C.8	Buoy displacement at wind speed U of 10 m/s at PTO damping b of 2 kN.s/m 11	
C.9	Buoy displacement at wind speed U of 10 m/s at PTO damping b of 5 kN.s/m 11	3
C.10	Buoy displacement at wind speed U of 10 m/s at PTO damping b of 10 kN.s/m11	3
	Amplification ratio AR at different PTO damping b and wind speeds U 11	
C.12	Displacement difference at different PTO damping b and wind speeds U 11	4

Nomenclature

Speed ratio Δ Kronecker delta function δ Power absorption efficiency η Convolution kernel λ Capture width Multiplication factor with inverse time dimensions λ_{rd} Density of sea water ρ Taper angle of the sheave φ Random phase for irregular waves modeling ϕ_i $\psi_e(t)$ Even function of the impulse response function for radiation Odd function of the impulse response function for radiation $\psi_o(t)$ $\psi_r(t)$ Impulse response function for radiation Frequency in (rad/s) ω Wave energy frequency in (rad/s) ω_{ρ} Peak frequency in (rad/s) ω_m System natural frequency in (rad/s) ω_n Heaving buoy natural frequency in (rad/s) ω_{nb} Zero-up crossing wave frequency in (rad/s) ω_z $a(\omega)$ Acceleration in frequency domain â Acceleration in complex amplitude Bretschneider formula parameter dependent on the maximum frequency A AR Amplification ratio Heaving buoy cross-sectional area crossing the water surface A_h System matrix for the radiation force state space sub-system A_{ps} System matrix of the state space model A_s bPower take-off system damping

 b_{opt} Power take-off system optimum damping b_r hydrodynamic damping В Bretschneider formula parameter dependent on the root mean square value of the spectrum B_{ps} System vector for the radiation force state space sub-system B_s System vector of the state space model Central distance between pulleys C_p C_{ps} System vector for the radiation force state space sub-system C_{s} System vector of the state space model d Heaving buoy draft (submerged height) D_{α} Running diameter of pulley α Minimum running diameter for sheave α $D_{\alpha,min}$ Heaving buoy diameter D_b D_{pb} Buoy-side pulley running diameter External-spring-side pulley running diameter D_{ps} Ε Energy spectral density function f_d Damping force **Excitation force** f_e Radiation force f_r Restoring force f_{s} Tuning force f_t \hat{F}_e Heave excitation force complex amplitude \hat{F}_r Radiation force complex amplitude Gravitational acceleration g h Water depth $H_0^{(1)}$ Hankel function of first kind of order 0 $H_0^{(1)}$ First derivative of Hankel function of first kind of order 0 $H_{1/3}$ Average wave height of the highest one-third waves

 H_{s} Significant wave height i Complex number The first derivative of the modified Bessel function of the first kind of order I_0 \hat{I}_0 Modified Bessel function of the first kind of order 0 I_1 Modified Bessel function of the first kind of order 1 Moment of inertia of the pulleys I_{p} First Bessel function of order zero J_0 First derivative of first Bessel function of order zero J_0 k Stiffness of the system Modified Bessel function of the second kind of order 0 k_0 \vec{k}_0 First derivative of modified Bessel function of the second kind of order 0 Heaving buoy buoyancy stiffness k_b Controller variable external stiffness $k_{controller}$ System effective stiffness k_{eff} External stiffness k_{ext} L_p V-belt pitch length Zeroth spectral moment m_0 Second spectral moment m_2 Heaving buoy mass m_b Equivalent oscillating mass of the moving components of the controller m_{eq} n_{th} spectral moment m_n hydrodynamic added mass m_r Total oscillating mass including the controller inertia effect m_{tot} P Available power per unit width of wave front (power flux) P_{av} Average absorbed power Kinetic power P_k Power consumed in the mechanical damper P_{m}

Maximum power consumed in the mechanical damper

 $P_{m,max}$