Role of Phototherapeutic Keratectomy in treatment of various corneal lesions

Essay

Submitted for partial fulfillment of Master degree in Ophthalmology

By

Osama Ramadan Mahmoud M.B.,B.Ch

Supervised by

Prof. Dr. Hazem Hosny Nouh

Professor of Ophthalmology Faculty of medicine-Ain Shams University

Dr. Ahmed Taha Ismail

Lecturer of Ophthalmology Faculty of medicine-Ain Shams University

> Faculty of medicine Ain Shams University Cairo - Egypt 2014

دور اقتطاع سطح القرنية بالمعالجة الضوئية في علاج أمراض القرنية المختلفة

رسالة مقدمة من

الطبيب/ أسامة رمضان محمود

بكالوريوس الطب والجراحة

توطئة للحصول على درجة الماجستير في طب وجراحة العيون

تحت إشراف

أ.د/ حازم حسني نوح

أستاذ طب وجراحة العيون كلية الطب- جامعة عين شمس

د/ احمد طه إسماعيل

مدرس طب وجراحة العيون كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس القاهرة - مصر ٢٠١٤

Acknowledgment

First of all, I would like to express my deepest gratitude to "Allah" for all his favours and blessings.

I would like to thank Prof. Dr. Hazem Nouh, Professor of Ophthalmology, Ain Shams University, for his great help and support. It is a great honor to work under his supervision.

I would like also to express my sincere appreciation and thanks to Dr. Ahmed Taha, Lecturer of Ophthalmology, Ain Shams University, who helped me a lot to finish this work.

Words can hardly express my sincere and great appreciation to my family who encouraged me and prayed for me. Great acknowledgement and thanks to my teachers and colleagues for their cooperation.

Contents

•	List of abbreviations	i
•	List of figures	iv
•	List of tables	vi
•	Introduction	1-2
•	Aim of work	3
•	Anatomy and physiology of the cornea	4-15
•	Various corneal pathologies	16-31
•	Principles of excimer laser	32-40
•	Phototherapeutic Keratectomy	41-122
	➤ Indications of phototherapeutic keratectomy	41
	➤ Preoperative assessment and selection of patients	45
	> Treatment strategies	52
	Surgical procedure	57
	Postoperative care	66
	➤ Wound healing after phototherapeutic keratectomy	68
	Complications of phototherapeutic keratectomy	72
	➤ Phototherapeutic keratectomy in various corneal lesions	80
•	Summary	123-125
•	References	126-151
•	Arabic summary	1-2

List of abbreviations

AD: Autosomal dominant.

AMT: Amniotic membrane transplantation.

AS-OCT: Anterior segment Optical coherence tomography.

ATPase: Adenosine triphosphatase.

BCVA: Best corrected visual acuity.

BK: Bullous keratopathy.

BL: Bowman's layer.

BSK: Band-shaped keratopathy.

CAG: Conjunctival autografts.

CDK: Climatic droplet keratopathy.

CL: Contact lens.

Cm: Centimeter.

CXL: Cross-linking.

DALK: Deep anterior lamellar keratoplasty.

DLK: Diffuse lamellar keratitis.

DSAEK: Descemet stripping automated endothelial

keratoplasty.

ECM: Extracellular matrix.

EDTA: Ethylenediamine tetraacetic acid.

eV: electron Volt.

FDA: Food and drug administration.

FED: Fuchs endothelial dystrophy.

GCD: Granular corneal dystrophy

H: Hour.

ICRS: Intrastromal corneal ring segments.

IOL: Intraocular lens.

IOP: Intraocular pressure.

KCN: Keratoconus nodules.

LASIK: Laser in-situ keratomileusis.

LCD: Lattice corneal dystrophy.

LKP: Lamellar keratoplasty.

MCD: Macular corneal dystrophy.

MHz: Mega Hertz.

Min: Minutes.

Mm: Millimetre.

μm: Micrometer.

MMC: Mitomycin-C.

Nm: Nanometer.

Ns: Nanoseconds.

NSAIDs: Nonsteroidal anti-inflammatory drugs.

OCT: Optical coherence tomography.

PALM: Photoablated lenticular modulator.

PKP: Penetrating Keratoplasty.

PMMA: Polymethyl methacrylate.

PRK: Photorefractive keratectomy.

PTK: Phototherapeutic keratectomy.

RBCD: Reis-Bücklers corneal dystrophy.

RCE: Recurrent corneal erosions.

RGP: Rigid gas permeable.

S: Seconds.

SBCL: Soft bandage contact lens.

SCCD: Schnyder crystalline corneal dystrophy.

SCI: Steep central island.

SK: Superficial keratectomy.

SND: Salzmann's nodular degeneration.

TEM: Traditional eye medicines.

UBM: Ultrasound biomicroscope.

UCVA: Uncorrected visual acuity.

UV: Ultraviolet.

VA: Visual acuity.

WHO: World health organization.

List of figures

Figure 1: Microscopic structure of the cornea	5
Figure 2: Corneal wound healing cascade	15
Figure 3: Fungal ulcer with feathery borders	17
Figure 4: Salzmann's nonules	20
Figure 5: Slit lamp photographs of a case of BSK	20
Figure 6: Advanced CDK	21
Figure 7: A case of RBCD	23
Figure 8: LCD1	25
Figure 9: MCD, biomicroscopic view	27
Figure 10: Excimer machine	34
Figure 11: Three components of excimer laser	38
photoablation	
Figure 12: A) 193-nm excimer laser ablation in corneal	39
tissue (straight sharp border), B) 248 nm and	
beyond (jagged border)	
Figure 13: Main indications of PTK	42
Figure 14: Computerized corneal topography shows	49
irregularity of corneal surface induced by SND	
Figure 15: Preoperative pentacam opacity measurement	49
Figure 16: AS OCT showing a corneal scar	51
Figure 17: UBM image measures the corneal thickness	52

Figure 18: The debride and polish technique a-	60	
elevations removed mechanically. b- plishing of		
the remains		
Figure 19: a- Ablation without masking agent. b-	62	
Ablation with use of a masking agent		
Figure 20: (a, b) Applying a thin film of a masking agent	63	
using a sponge		
Figure 21: Corneal surface cut with a blade (A)	69	
compared to a surface cut with excimer laser (B)		
Figure 22: Ectasia after PTK	78	
Figure 23: Recurrence location after PTK for corneal	79	
dystrophy		
Figure 24: PTK in a case of SND	82	
Figure 25: PTK in a case of CDK	83	
Figure 26: PTK in a case of BSK	85	
Figure 27: PTK in a case of Thiel - Behnke corneal	90	
dystrophy		
Figure 28: A- SCCD before treatment, B- 1 month after	91	
PTK		
Figure 29: (a) slit lamp appearance of GCD before	93	
treatment, (b) 3 month after PTK		
Figure 30: PTK in a case of BK	95	
Figure 31: PTK in a case with a superficial corneal scar		
Figure 32: PTK for RCE	102	

Figure 33: PTK in a case of Acanthamoeba keratitis	106	
Figure 34: PTK in a case with KCN	109	
Figure 35: LASIK flap microsrtia	116	
Figure 36: PTK in a case of LASIK flap srtia	117	
List of tables		
Table 1: The UV wavelengths obtained from some		
common gas mixtures		
Table 2: Changes in BCVA after PTK in summit clinical	43	
trial		

Introduction

The cornea is the transparent connective tissue window at the front of the eye. The smooth, wet surface of the cornea is the major refractive surface of the visual system, which, along with corneal transparency, enables light to proceed through the lens and onto the retina for photoreceptor activation (**Gipson, 2007 and Knupp et al, 2009**).

Corneal diseases such as scars, degenerations(e.g. band-shaped keratopathy "BSK"), dystrophies, bullous keratopathy (BK), microbial keratitis and recurrent corneal erosions(RCE) are important causes of visual blindness. Anterior stromal diseases, being superficial, can be treated using various minimally invasive surgical procedures like lamellar keratoplasty(LKP) or by excimer lasers, that is, phototherapeutic keratectomy(PTK) (**Rathi et al, 2012**).

PTK is an important, safe and effective excimer laserbased surgical tool for treatment of numerous corneal disorders that successfully attains smooth regular ocular surface (**Arfaj et al, 2011**).

The key to a successful outcome depends on proper case selection. For the right indication and successful