

AIN SHAMS UNIVERSITY FACULTY OF SCIENCE GEOPHYSICS DEPARTMENT

Seismic De- Multiple Techniques, Studies and Optimization

BY KHOLOUD BADR ELIOW B. Sc.

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE MASTER DEGREE OF SCIENCE

IN GEOPHYSICS Supervised by

PROF. DR. A. NASSER HELAL Professor of Geophysics Geophysics Department Faculty of Science Ain Shams University DR. AHMED ELBASSIONY
Associate Professor of Geophysics
Geophysics Department
Faculty of Science
Ain Shams University

CAIRO, EGYPT. 2015

ACKNOWLEDGMENTS

First and above all, I would like to express my great thanks to" ALLA" who supplied me with strength and patience to complete this work.

I am indebted to express my deepest gratitude and appreciation to Prof. Dr. A. Nasser Helal Professor of Geophysics and Dr. Ahmed Elbassiony Associate Professor of Geophysics, Department of Geophysics, and Faculty of science, Ain Shams University, Cairo, Egypt, for supervising, critical reading and revising the manuscript.

My deep thanks, gratitude and appreciation are extended to Dr. Ahmed Elbassiony Associate professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for suggesting the point of research, supervising and planning the work, critical reading and revising the manuscript.

My deep thanks Petroleum Geo-Services for facilitating the software for processing the 2D synthetic dataset.

ABSTRACT

The development of the surface related multiple elimination techniques have started to take a new curve. The traditional techniques using velocity discrimination of multiples and periodicity estimation are on their final development peek. The reason these techniques have reached a stall development is due to the problems they failed to solve in complex water bottom structures. This work will show how a 2D synthetic data with fairly complex water bottom relief can have quite complex interference of primaries and multiples in the near-surface without being correctly predicted by these techniques. The 2D SRME technique will have some problems in 2D in predicting the multiples at their correct time and phase.

The predictive deconvolution can still be accounted for in the shallow water bottom situation given the water bottom is flat. The limitation that will be presented in this work will through the light on the need of a more powerful technique that is free from assumptions related to the natural geologic nature of the problem. Instead, the optimal technique shall use the details of the geologic nature of the problem to solve it. The conclusion is to highlight the advantages and disadvantages of each of the studied methods so that precautions can be taken into account when dealing with similar geologic situations, and to draw a best practice for at least two different degrees of complexity of the water bottom

Contents

Subject	page
Acknowledgments	i
Abstract	ii
Contents	iv
List Of Figures	V
List Of Tables	xii
CHAPTER ONE: INTRODUCTION	1
1.1 General Outline	1
1.2 Available Data	3
1.3 Scope Of The Present Study	4
CHAPTER TWO: DE-MULTIPLE	5
TECHNIQUES	
2.1 Introduction	5
2.2. Multiple Removal Based On Move-Out And Dips	6
Discrimination	O
2.2.1 F-K Demultiple	7
2.2.2 Radon Transforms	8
2.2.2.1 The Linear Radon Transform	10
2.2.2.2 The Parabolic Radon Transform	12
2.2.2.3 The Hyperbolic Radon Transform	13
2.2.3 Limitation	13
2.2.4 Conclusion	14
2.3 Periodicity Based Method Category	15
2.3.1 Predictive Demultiple	16
2.3.1.1 Designing Filter By Least Square Optimization	18
2.3.1.2 Predictive Deconvolution Parameter	20
2.3.1.2.1 Autocorrelation Window (W)	20
2.3.1.2.2 Operator Length (N)	21
2.3.1.2.3 Prediction Lag (A)	21
2.3.2 Shallow Water Demultiple	22
2.3.3 Limitation	23
2.3.4 Conclusion	25
2.4 Model Based Methods 2.4.1 Surface Related Multiple Elimination	26 26
2.4. I Surface Keialed Mullible Ellillillation	∠0

2.4.1.1theory	29
2.4.2 Limitation	32
2.4.3 Conclusion	33
2.5 Adaptive Subtraction Of Predicted Multiples	33
2.5.1 Least Square Subtraction Strategy	34
2.5.2 Combine Global And Local Subtraction	35
2.5.3 Limitation	35
2.5.4 Conclusion	36
CHAPTER THREE: ELIMINATION OF	39
SURFACE RELATED MULTIPLE	
3.1 Introduction	39
3.2 Finite Difference Modeling With The Acoustic Wave	39
Equation	
3.3 Case Study	42
3.3.1 Predictive Deconvolution	51
3.3.2 Shallow Water Demultiple	68
3.3.3 Surface Related Multiple Elimination	82
3.4 CONCLUSIONS	100
CHAPTER FOUR: DE-MULTIPLE	103
STRATEGY	
4.1 Introduction	103
4.2 Multi-Model Adaptive Subtraction	104
4.2.1 Strategy 1	105
4.2.2 Strategy 2	110
4.3 Summary	117
4.4 Parabolic Radon Transform	120
4.5 Time Migration	128
4.6 CONCLUSIONS	133
SUMMERY AND CONCLUSIONS	135
REFERENCES	141
ARABIC SUMMARY	145

List of Figures

Figures	Page
Figure 2.1 A hyperbola in CMP gather (a) maps onto an ellipse in the $(\tau$ -p) domain (b); and a straight line in CMP gather maps to and a point in $(\tau$ -p) domain. Energy is tangent to the line B in (a) maps to the point B in (b)	11
Figure 2.2 The periodicity of multiples along p traces	11
Figure 2.3 a) a first order multiple consists of two	27
primaries b) make all possible primary combinations	21
Figure 2.4 (a) illustrates this point where the surface	
multiple SABR has three primary segments: SA, AB, and	
BR. The surface multiple in Figure 2.1(b) consists of two	28
primary reflection from the water bottom primary events	
SA and AR. Primary SA is in the trace whose shot and	
receiver are located at points S and A, respectively.	
Primary AR is in the trace whose shot and receiver are	
located at points A and R, respectively.	
Figure 3 .1 The General workflow used to prepare the	43
data to the different Demultiple procedures	
Figure 3 .2 Interval velocity model converted to time	44
domain showing different Primary horizons (P1 is the	
water bottom)	
Figure 3 .3 Example of one of the synthetic shot records	45
Figure 3 .4 Example of the synthetic before/after	47
spherical divergence correction	40
Figure 3 .5 Example of the synthetic before/after direct	48
arrival attenuation	
Figure 3 .6 NMO stack showing the complexity of the	
surface related multiples and their interference at the	50
different water bottom reliefs. The study will show the	50
effect of the different demultiple techniques at three different cases of water bottom complexity, namely case-	
1: shallow flat WB and case-2: dipping	
Figure 3 .7 Shot gather before applying predictive	53
deconvolution	55
deconvolution	

Figure 3 .8 Multiple models from predictive	54
deconvolution	
Figure 3 .9 Shot gather after applying predictive	55
deconvolution	
Figure 3 .10 Flat WB A)Shot gather before applying	
predictive deconvolution B) Shot gather after applying	
predictive deconvolution C) Multiple models from	56
predictive deconvolution First order multiple denoted by	
M, while the second order multiple is denoted by M*	
Figure 3 .11 Dipping WB A) Shot gather before applying	
predictive deconvolution B) Shot gather after applying	57
predictive deconvolution C) Multiple models from	
predictive deconvolution First order multiple denoted by	
M, while the second order multiple is denoted by M*	
Figure 3. 12 CDP stack gather before applying predictive	59
deconvolution	
Figure 3. 13 Multiple model stack after predictive	60
Figure 3. 14 CDP stack gather after applying predictive	61
deconvolution	
Figure 3. 15 Stack display on the LEFT shows the	
predictive deconvolution multiples model. Stack display	
on the RIGHT show the stack after applying the adaptive	63
subtraction of the model from the input data model stack	
after predictive deconvolution	
Figure 3. 16 A)Tau-p transform of shot gather before	
applying predictive deconvolution B) Tau-p transform of	64
shot gather after applying predictive deconvolution 63	
Figure 3. 17 a) Auto correlation of shot gather before	
applying predictive deconvolution b) Auto correlation of	65
shot gather after applying predictive deconvolution	-
Figure 3. 18 Flat WB: A) CDP stack before applying	
predictive deconvolution B)CDP stack after applying	
predictive deconvolution C)Auto correlation of CDP stack	66
before applying predictive deconvolution D) Auto	00
correlation of CDP stack after applying predictive	
deconvolution	
Figure 3. 19 Dipping WB: A) CDP stack before applying	
predictive deconvolution B) CDP stack after applying	67
predictive deconvolution C) Auto correlation of CDP	57
stack before applying predictive deconvolution D) Auto	
stack octore applying predictive deconvolution D) Auto	

correlation of CDP stack after applying predictive	
deconvolution	
Figure 3. 20 Shot gather before applying SWD	69
Figure 3. 21 Multiple models from SWD	70
Figure 3. 22 Shot gather after applying SWD	71
Figure 3. 23 Flat WB A) Shot gather before applying SWD B) Shot gather after applying SWD C) Multiple models from SWD First order multiple denoted by M, while the second order multiple is denoted by M*	72
Figure 3. 24 Dipping WB A) Shot gather before applying SWD B) Shot gather after applying SWD C) Multiple models from SWD First order multiple denoted by M,	74
while the second order multiple is denoted by M*	
Figure 3. 25 CDP stack gather before applying SWD	75
Figure 3. 26 Multiple model stack after SWD	76
Figure 3. 27 CDP stack gather after applying SWD	77
Figure 3. 28 Stack display showing LEFT: the SWD multiple model stack and RIGHT: the NMO stack after application of SWD	79
Figure 3. 29 A) Auto correlation of shot gather before	
applying SWD B) Auto correlation of shot gather after applying SWD	80
Figure 3. 30 Flat WB: A) CDP stack before applying	
SWD B)CDP stack after applying SWD C)Auto correlation of CDP stack before applying SWD D) Auto correlation of CDP stack after applying SWD	81
Figure 3. 31 Dipping WB: A) CDP stack before applying	
SWD B)CDP stack after applying SWD C)Auto correlation of CDP stack before applying SWD D) Auto correlation of CDP stack after applying SWD	82
	84
Figure 3 .32 Shot gather before applying SRME	_
Figure 3 .33 Multiple models from SRME	85
Figure 3 .34 Model of shot gather with phase filter of SRME	86
Figure 3 .35 Shot gather after applying SRME Figure 3 .36 Flat WB A) Shot gather before applying	87
SRME B) Shot gather after applying SRME C) Model of shot gather with phase filter of SRME First order multiple denoted by M, while the second order multiple is denoted by M*	88
0) 111	

Figure 3 .37 Dipping WB A) Shot gather before applying SRME B) Shot gather after applying SRME C) Model of shot gather with phase filter of SRME First order multiple denoted by M, while the second order multiple is denoted by M*	89
Figure 3.38 A)Cross correlation of model with input CDP stack gather B) Cross correlation of model with phase filter with input CDP stack gather.	90
Figure 3 .39 CDP stack gather before applying SRME Figure 3 .40 Model CDP stack gather of SRME without phase filter	91 92
Figure 3 .41 Multiple model stack of SRME with phase filter Figure 3 .42 CDP stack gather after applying SRME	93
Figure 3.43 Stack display showing LEFT: the 2D SRME	94
multiples model stack and RIGHT: the NMO stack after application of 2D SRME	96
Figure 3 .44 A) Auto-correlation of shot gather before applying SRME B) Auto correlation of shot gather after applying SRME	97
Figure 3. 45 Flat WB: A) CDP stack before applying SRME B)CDP stack after applying SRME C)Auto correlation of CDP stack before applying SRME D) Auto	98
correlation of CDP stack after applying SRME Figure 3. 46 Dipping WB: A) CDP stack before applying SRME B)CDP stack after applying SRME C)Auto correlation of CDP stack before applying SRME D) Auto correlation of CDP stack after applying SRME	99
Figure 4. 1 De-multiple workflow	105
Figure 4. 2 Flat WB A) Shot gather before strategy 1 B) Shot gather after strategy 1. First order multiple denoted by M, while the second order multiple is denoted by M*.	106
Figure 4. 3 Dipping WB A) Shot gather before strategy 1 B) Shot gather after strategy 1. First order multiple denoted by M, while the second order multiple is denoted by M*.	107
Figure 4. 4 A) Auto correlation of shot gather before applying strategy 1 B) Auto correlation of shot gather after applying strategy 1. First order multiple denoted by M, while the second order multiple is denoted by M*.	108

Figure 4. 5 Flat WB: A) CDP stack before applying strategy 1 B)CDP stack after applying strategy 1 C)Auto correlation of CDP stack before applying strategy 1 D) Auto correlation of CDP stack after applying strategy 1	109
Figure 4. 6 Dipping WB: A) CDP stack before applying strategy 1 B) CDP stack after applying strategy 1 C) Auto correlation of CDP stack before applying strategy 1 D) Auto correlation of CDP stack after applying strategy 1	110
Figure 4. 7 Flat WB A) Shot gather before SWD and predictive deconvolution B) Shot gather after SWD and predictive deconvolution. First order multiple denoted by M, while the second order multiple is denoted by M*.	111
Figure 4. 8 Flat WB A) Shot gather before strategy 2 B) Shot gather after strategy 2. First order multiple denoted by M, while the second order multiple is denoted by M*. Figure 4. 9 Dipping WB A) Shot gather before SWD and	112
predictive deconvolution B) Shot gather after SWD and predictive deconvolution. First order multiple denoted by M, while the second order multiple is denoted by M*.	112
Figure 4. 10 Dipping WB A) Shot gather before strategy 2 B) Shot gather after strategy 2. First order multiple denoted by M, while the second order multiple is denoted by M*.	113
Figure 4. 11 A) Auto correlation of shot gather before applying SWD and predictive deconvolution B) Auto correlation of shot gather after applying SWD and predictive deconvolution. First order multiple denoted by	114
M, while the second order multiple is denoted by M*. Figure 4. 12 A) Auto correlation of shot gather before applying strategy 2 B) Auto correlation of shot gather after applying strategy 2. First order multiple denoted by M, while the second order multiple is denoted by M*.	115
Figure 4. 13 Flat WB: A) CDP stack before strategy 2 B) stack after applying strategy 2 C) Auto correlation of stack after applying strategy 2 D) Auto correlation of stack after applying strategy 2	116
Figure 4. 14 Dipping WB: A) stack before applying strategy 2 B) stack after applying strategy 2 C)Auto	117

correlation of stack before applying strategy 2 D) Auto	
correlation of stack after applying strategy 2	
Figure 4. 15 Flat WB: A) stack gather without demultiple	
B) stack gather after applying strategy 1 C) stack gather	118
after applying strategy 2. First order multiple denoted by	
M, while the second order multiple is denoted by M*.	
Figure 4. 16 Dipping WB: A) stack gather without	
demultiple B) stack gather after applying strategy 1 C)	119
stack gather after applying strategy 2. First order multiple	
denoted by M, while the second order multiple is denoted	
by M*.	
Figure 4. 17 A) autocorrelation on shot gather without	
demultiple B) autocorrelation on shot gather after	120
applying strategy 1 C) autocorrelation on shot gather after	
applying strategy 2. First order multiple denoted by M,	
while the second order multiple is denoted by M*.	
Figure 4 .18 Flat WB: A) Raw CDP gather B) CDP gather	
after applying strategy1 C) CDP gather after applying	122
Radon on strategy1	
Figure 4 .19 Flat WB: A) Raw CDP gather B) CDP gather	
after applying strategy2 C) CDP gather after applying	123
Radon on strategy2	
Figure 4 .20 Dipping WB: A) Raw CDP gather B) CDP	
gather after applying strategy1 C) CDP gather after	124
applying Radon on strategy1	
Figure 4 .21 Dipping WB: A) Raw CDP gather B) CDP	
gather after applying strategy2 C) CDP gather after	125
applying Radon on strategy2	
Figure 4 .22 A) CDP stack after applying strategy 1 B)	126
CDP stack after applying Radon on strategy 1	
Figure 4 .23 A) CDP stack after applying strategy2 B)	127
CDP stack after applying Radon on strategy2	
Figure 4 .24 A) CDP stack after applying Radon on	128
strategy1 B) CDP stack after applying Radon on strategy2	
Figure 4. 25 A) Raw CDP stack gather before applying	130
time migration B) Raw CDP stack gather after applying	
time migration	
Figure 4. 26 Migrated stack display showing LEFT:	131
Migrated stack before applying strategy1 and RIGHT:	
Migrated CDP stack after applying strategy1	

Figure 4. 27 Migrated stack display showing LEFT:	132
Migrated stack before applying strategy2 and RIGHT:	
Migrated stack after applying strategy2	
Figure 4. 28 Migrated stack display showing LEFT:	133
Migrated stack after applying Radon on strategy1 and	
RIGHT: Migrated stack after applying Radon on strategy2	

List of Tables

Table	Page
Table (3-1): Detailed parameters for the two overlapping windows of the deconvolution	51
operator Table (4-1): Detailed parameters for parabolic radon	121

Chapter One Introduction

1.1 General Outline

The basic models in seismic processing assume that reflection data only consist of primaries (Hill, S., Dragoset, B., and Weglein, A., 1999). So far, multiples are considered as noise in seismic data. We have to suppress these multiples prior to migration, inversion, AVO analysis, and stratigraphic interpretation. Otherwise, multiples can be misinterpreted as, or interfere with, primaries and dramatically change the results of migration, inversion, AVO analysis, and stratigraphic interpretation.

According to where the downward reflection of the ray path occurs, multiples can be divided into two types (Dragoset, 1999); One is free-surface multiples that are sometimes referred to as surface-related multiples or surface multiples. This type of multiple has at least one downward reflection at the air-water "free surface" simple water-bottom multiples (or pure water-bottom multiples) and second-order water- bottom multiples (or seafloor peg-leg) or reverberation belong to this type of multiples.

The other type is internal multiples that have all of their downward reflections below the free surface. This type of multiple gets more attention when the exploration target is a subsalt or sub-basalt layer.

Over the years, many techniques for suppressing multiples have been tried. In recent years, multiple-suppression techniques based on the wave equation have attracted attention because they seem to suppress all multiples without coincidentally attenuating the primaries (Dragoset, 1998). The choice of multiple-suppression methods does not only depend on the effectiveness of each method but is a compromise of the effectiveness, processing objective and cost of each method. Each method has its own assumptions, and it is useful when these assumptions are compatible with the data.

Three basic methods for suppressing multiples exist in published literature. The first group of methods, Deconvolution methods that use the periodicity of multiples for suppression and are effective in suppressing short-period free-surface multiples generated at shallow reflectors.

The second group of methods, surface related multiple elimination (SRME) and adaptive subtraction use recorded data to predict multiples this method obtain multiple-free data by subtracting the predicted multiples.

The third group of methods, filtering methods that use differential move-out between primaries and multiples that are separate in Radon domains. These filtering methods can successfully suppress multiples generated at moderate to deep reflectors where multiples are well-separated from their primaries.

In order to effectively attenuate residual multiples two strategies were applied:

Strategy 1: models for the SWD (deterministic de-convolution), Tau-P predictive deconvolution (statistical de-convolution) and surface related multiple elimination (SRME) were created from the input data then a multi adaptive subtraction was performed for all of them.