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ABSTRACT 

 

The development of the surface related multiple elimination 

techniques have started to take a new curve. The traditional techniques 

using velocity discrimination of multiples and periodicity estimation 

are on their final development peek. The reason these techniques have 

reached a stall development is due to the problems they failed to solve 

in complex water bottom structures. This work will show how a 2D 

synthetic data with fairly complex water bottom relief can have quite 

complex interference of primaries and multiples in the near-surface 

without being correctly predicted by these techniques. The 2D SRME 

technique will have some problems in 2D in predicting the multiples at 

their correct time and phase.  

The predictive deconvolution can still be accounted for in the 

shallow water bottom situation given the water bottom is flat. The 

limitation that will be presented in this work will through the light on 

the need of a more powerful technique that is free from assumptions 

related to the natural geologic nature of the problem. Instead, the 

optimal technique shall use the details of the geologic nature of the 

problem to solve it. The conclusion is to highlight the advantages and 

disadvantages of each of the studied methods so that precautions can 

be taken into account when dealing with similar geologic situations, 

and to draw a best practice for at least two different degrees of 

complexity of the water bottom 
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Chapter One 

Introduction 
 

1.1 General Outline 

 The basic models in seismic processing assume that reflection 

data only consist of primaries (Hill, S., Dragoset, B., and Weglein, A., 

1999). So far, multiples are considered as noise in seismic data. We 

have to suppress these multiples prior to migration, inversion, AVO 

analysis, and stratigraphic interpretation. Otherwise, multiples can be 

misinterpreted as, or interfere with, primaries and dramatically change 

the results of migration, inversion, AVO analysis, and stratigraphic 

interpretation. 

  According to where the downward reflection of the ray path 

occurs, multiples can be divided into two types (Dragoset, 1999); One 

is free-surface multiples that are sometimes referred to as surface-

related multiples or surface multiples. This type of multiple has at least 

one downward reflection at the air-water “free surface” simple water-

bottom multiples (or pure water-bottom multiples) and second-order 

water- bottom multiples (or seafloor peg-leg) or reverberation belong to 

this type of multiples.  

 The other type is internal multiples that have all of their 

downward reflections below the free surface. This type of multiple gets 

more attention when the exploration target is a subsalt or sub-basalt 

layer.  

 Over the years, many techniques for suppressing multiples have 

been tried. In recent years, multiple-suppression techniques based on 



 

the wave equation have attracted attention because they seem to 

suppress all multiples without coincidentally attenuating the primaries 

(Dragoset, 1998). The choice of multiple-suppression methods does not 

only depend on the effectiveness of each method but is a compromise 

of the effectiveness, processing objective and cost of each method. 

Each method has its own assumptions, and it is useful when these 

assumptions are compatible with the data. 

Three basic methods for suppressing multiples exist in 

published literature. The first group of methods, Deconvolution 

methods that use the periodicity of multiples for suppression and are 

effective in suppressing short-period free-surface multiples generated at 

shallow reflectors. 

The second group of methods, surface related multiple 

elimination (SRME) and adaptive subtraction use recorded data to 

predict multiples this method obtain multiple-free data by subtracting 

the predicted multiples.  

 The third group of methods, filtering methods that use 

differential move-out between primaries and multiples that are separate 

in Radon domains. These filtering methods can successfully suppress 

multiples generated at moderate to deep reflectors where multiples are 

well-separated from their primaries.  

In order to effectively attenuate residual multiples two strategies 

were applied: 

Strategy 1: models for the SWD (deterministic de-convolution), 

Tau-P predictive deconvolution (statistical de-convolution) and surface 

related multiple elimination (SRME) were created from the input data 

then a multi adaptive subtraction was performed for all of them. 


