Influences of novel bonding approaches on demineralized dentin substrate

Thesis
Submitted to the Faculty of Oral and Dental Medicine
Cairo University
In partial fulfillment of the requirements
of Doctor Degree in Operative Dentistry

By
Asmaa Ali Mohamed Yassen
B.D.S (Cairo University)

Supervisors

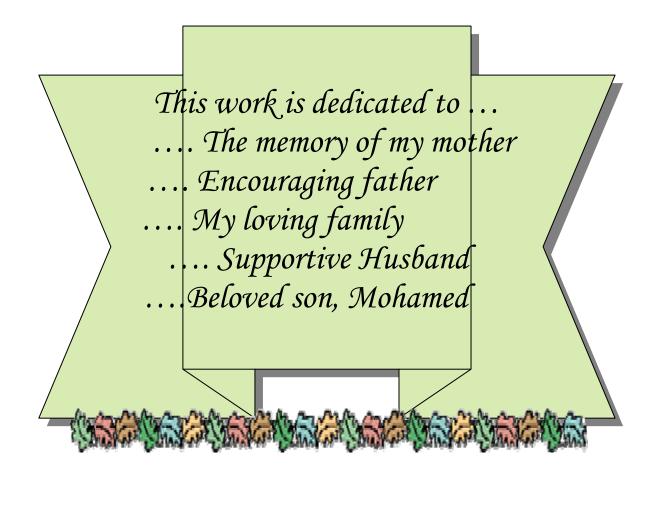
Dr. Enas Mohamed Mohy El Din

Professor and head of Operative Dentistry Department Faculty of Oral and Dental Medicine Cairo University

Dr. Heba Salah El-Dein Hamza

Assistant professor of Operative Dentistry Faculty of Oral and Dental Medicine Cairo University

بسم الله الرحمن الرحيم


Acknowledgment

I would like to acknowledge **Dr. Enas Mohamed Mohy El Din** Professor and Head of the Operative
Dentistry Department, Faculty of Oral and Dental
Medicine, Cairo University, to whom I would like to
express my grateful thanks and deepest appreciation for her
unlimited, endless help, meticulous supervision and valuable
guidance.

I am very much indebted to **Dr. Heba Salah El-Din Hamza**, Assistant professor of Operative Dentistry,
Faculty of Oral and Dental Medicine, Cairo University,
for her valuable advices and great help through the study.

I would also like to acknowledge all the staff members of the Operative Dentistry Department, Faculty of Oral and Dental Medicine, Cairo University.

Dedication

	Page
List of Appreviations	i
List of Tables	ii
List of Figures	vi
Introduction	1
Review of literature	٣
Aim of the study	01
Materials of the study	07
Results	Y1
Discussion	1 2 4
Summary and Conclusions	104
References	100
Appendix	$^{N}\mathcal{A}$
Arabic Summary	

List of Appreviation

List of Appreviation

AES	Auger electron spectroscopy
AFM	Atomic force microscopy
AS	Ascorbic acid
CA	Citric acid
CLSM	Confocal laser scanning microscopy
DSC	Differential scanning calorimetry
EDS	Energy dispersive x-ray spectroscopy
EDTA	EThylene diamine tetraacetic acid
FE	Ferric chloride
FESEM	Field emission scanning electron microscope
FTIR	Fourier transform infra red
HEMA	Hydroxyethy Imethacrylate
HETMA	Hydroxyethyl thiomethacrylate
HOP	Hydroxyproline
IEM	Isocyanatoethyl methacrylate
٤- META	٤- Methacryloxy ethyl trimellitatc anhydride
MMA	Methylmetlacrylate
MTBS	Microtensile bond strength
PAG	Phosphoric acid gel
PAS	Phosphoric acid solution
PMMA	Polymethyl methacrylate
SEM	Scanning electron microscope
SIMS	Secondary ion mass spectroscopy
TBB	Tri- n- bytyl borane
TEM	Transmission electron microscopy
UTS	Ultimate tensile strength
CuCl ^۲	Copper chloride
ZnZ	Zinc Zeolite

List of Tables

ii

LIST OF TABLES

		Page
Table	Variables of the study	٥٣
Table 「	Interaction of variables for microleakage testing	٥٣
Table 🏲	Interaction of variables for Chemical and Ultra- morphological analysis	٥٣
Table E	Leakage scores of cavities treated with conventional total etching technique (B ₁ T ₁)	٧٥
Table ∆	Leakage scores of cavities treated with conventional total etching technique and pretreated NaOCl and ascorbic acid (B $_1$ T $_7$)	٧٥
Table ٦	Leakage scores of cavities treated with conventional total etching technique and pretreated with Copper chloride (B_1 T_r)	٧٦
Table V	Leakage scores of cavities treated with conventional total etching technique and pretreated with Zinc Zeolite (B) T_{ϵ})	٧٦
Table N	Leakage scores of cavities treated with conventional self etching technique (B $_{\text{\tiny T}}$ T $_{\text{\tiny 1}}$)	٧٧
Table 9	Leakage scores of cavities treated with conventional self etching technique and pretreated with Naocl and ascorbic acid (B_{τ} T_{τ})	٧٧
Table I•	Leakage scores of cavities treated with conventional self etching technique and pretreated with Copper chloride (B_{τ} T_{τ})	YA
Table II	Leakage scores of cavities treated with conventional self etching technique and pretreated with Zinc Zeolite(B $_{\tau}$ T $_{\epsilon}$)	٧٨
Table IF	Descriptive statistics of dye penetration scores of total etching Single Bond system at the occlusal and gingival walls with different pretreatments using Chi square test	٧٩
	iii	
Table IT	Descriptive statistics of dye penetration scores of self etching Adper prompt L pop Bonding system at the occlusal and gingival walls with different pretreatments using Chi square test	٧٩

Table IL	Mean and descriptive statistics of gap area values in µm of total etching Single Bond system at the occlusal and gingival walls with different pretreatments using F test and Duncan's test(dt)	٨٢
Table 10	Mean and descriptive statistics of gap area values in µm of self etching Adper prompt Lpop system at the occlusal and gingival walls with different pretreatments using F test and Duncan's test(dt)	۸۳
Table 17	Mean and descriptive statistics of gap area values in µm of Single Bond total etching bonding system at the occlusal and gingival walls with different pretreatments using Student's t test	٨٥
Table W	Mean and descriptive statistics of gap area values in µm of Adper prompt Lpop self etching bonding system at the occlusal and gingival walls with different pretreatments using Student's t test	٨٦
Table \\	Mean and descriptive statistics of gap area values in µm ^Y of Single Bond total etching bonding system with different pretreatment modalities and the effect of marginal location using ANOVA test and Duncan's test(dt)	۸V
Table 19	Mean and descriptive statistics of gap area values in µm ^Y of Adper Prompt L pop self etching bonding system with different pretreatment modalities and the effect of marginal location using ANOVA test and Duncan's test(dt)	٨٨
Table 「・	Mean and descriptive statistics of gap area values in µm [↑] of Single Bond total etching bonding system and Adper prompt L pop self etching bonding systems with the different pretreatment modalities	۹,
Table 「I	using Student's t test	9 £
	iv	
Table 「「	Absorption bands , the values of intensities and structural assignment of Single Bond total etching bonding system	97

Table 「T	Absorption bands , the values of intensities and structural assignment of Adper prompt L pop bonding system	٩٨
Table T L	Absorption bands , the values of intensities and structural assignment of ascorbic acid	١
Table 🛚 🖒	Absorption bands ,the values of intensities and structural assignment of Zinc Zeolite salt	1.7
Table 「٦	Absorption bands ,the values of mean intensities and structural assignment of the demineralized dentin -Single Bond total etching bonding system interface (B ₁ T ₁)	1.5
Table	Absorption bands ,the values of mean intensities and structural assignment of the demineralized dentin -Single Bond total etching bonding system interface pretreated with NaOCI and ascorbic acid (B $_1$ T $_2$)	١٠٦
Table TA	Test of significance for the total etch technique (B, T_{γ}) and the pretreatment with NaOCl and ascorbic acid (B, T_{γ}) using Student's t test	1.4
Table ۲۹	Absorption bands ,the values of mean intensities and structural assignment of the demineralized dentin -Single Bond total etching bonding system interface pretreated with Copper chloride (B) T_r).	1.9
Table 🌇	Test of significance for the conventional total etch technique (B, T,) and the pretreatment with CuCl $_{\tau}$ (B, T $_{\tau}$) using Student's t test	11.
Table 🏻 T	Absorption bands ,the values of mean intensities and structural assignment of the demineralized dentin -Single Bond total etching bonding system interface pretreated with Zinc Zeolite (B) T_{ϵ})	117
Table 🏋	Test of significance for the conventional total etching technique (B, T,) and the pretreatment with Zn Z (B, T_{ϵ}) using Student's t test	۱۱۳
Table 🏋	Absorption bands, the values of mean intensities and structural assignment of demineralized dentin - Adper prompt L pop self etching bonding system interface (B_YT_1)	110

Table TE	Absorption bands, the values of mean intensities and structural assignment of demineralized dentin - Adper prompt L pop self etching bonding system interface pretreated with NaOCI and ascorbic acid $(B_{\tau}T_{\tau})$	117
Table 🏻 🖒	Test of significance for the conventional self etching system (B $_{\text{\tiny T}}$ T $_{\text{\tiny T}}$) and the pretreatment with NaOCl and ascorbic acid (B $_{\text{\tiny T}}$ T $_{\text{\tiny T}}$)using Student's t test	114
Table 🌂	Absorption bands, the values of mean intensities and structural assignment of demineralized dentin - Adper prompt L pop self etching bonding system interface pretreated with Copper chloride $(B_{\tau}T_{\tau})$	١٢.
Table "V	Test of significance of the conventional self etching system ($B_{\tau} T_{\tau}$) and the pretreatment with CuCl _{\tau} ($B_{\tau} T_{\tau}$) using Student's t test	171
Table TA	and structural assignment of demineralized dentin - Adper prompt L pop self etching bonding system interface pretreated with Zinc Zeolite (B ₁ T ₁)	١٢٣
Table 🏻 🤊	Test of significance for the conventional self etching system(B_τ T_τ)and the pretreatment with Zn Z (B_τ $T_{\rm f}$) using Student's t test	17 £
Table ٤٠	Mean and descriptive statistics of the chemical analysis results of Single Bond total etching bonding system with the different pretreatments using ANOVA and Duncan's multiple range test (dt)	١٢٦
Table EI	Mean and descriptive statistics of the chemical analysis results of Adper prompt I pop self etching bonding system with the different pretreatments using ANOVA and Duncan's multiple range test (dt)	١٢٧
Table LT	B_{τ}	
	Student's t test	171