IMMUNE RESPONSE IN TUBERCULOSIS

Essay

Submitted for fulfillment of master degree In Medical Microbiology and Immunology

By

Duaa Desouky Ahmed Abd El-Aaty

(M.B, B.Ch.)
Cairo University

Supervised by

PROF. DR. HALA MOHAMED SAFOUH

PROFESSOR OF MEDICAL MICROBIOLOGY AND IMMUNOLOGY FACULTY OF MEDICINE CAIRO UNIVERSITY

DR. IMAN EZZAT WALI

LECTURER OF MEDICAL MICROBIOLOGY AND IMMUNOLOGY FACULTY OF MEDICINE CAIRO UNIVERSITY

FACULTY OF MEDICINE

CAIRO UNIVERSITY

2008

وقُل ربي زدني علما

مدق الله العظيم

" سورة طـه آية رقع ١١٤ "

ABSTRACT

Tuberculosis is a major cause of human morbidity and mortality. Host Immune response against tuberculosis involves both the innate and adaptive immune responses. Macrophage represents both the victim and the accused in immune response against tuberculosis. Critical differences exist between adults and children immune response to *M. tuberculosis*. HIV infection remains the most common risk factor for the development of active TB. A vaccine is considered to be the best solution for controlling TB.

KEY WORDS

Tuberculosis, immune response, macrophage, T lymphocytes, HIV, vaccines.

ACKNOWLEDGEMENTS

I would like to express my deep gratitude and cardinal appreciation to **Prof. Dr. Hala Mohamed Safouh** Professor of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, for her kind guidance, constant encouragement and generous supervision throughout this work.

I would like to extend my deepest and special appreciation to **Dr. Iman Ezzat Wali** Lecturer of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, for her great support, close supervision and experienced advice.

I would like to acknowledge all the professors and lecturers in the department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University.

Finally I would like to convey my sincere love to my husband, daughters, and my parents.

CONTENTS

List of figure	es	i
List of abbre	eviations	iv
Introduction	& Aim of work	1
Background		4
Histor	y of tuberculosis	4
Epiden	niology of tuberculosis	8
Host ge	enetics and tuberculosis susceptibility	10
Immune med	chanisms	15
Overvi	ew	15
Innate immune response		16
	Dendritic cells	17
	Mast cells	20
	Natural killer cells	21
	Neutrophil leucocytes	22
	Epithelial cells	24
	Defensins	25

Macrophages	
Phagocytosis and immune recognition of <i>M. tuberculosis</i> 2	29
Mycobacterial resistance to destruction 3	32
M. tuberculosis prevent phagosome- lysosome fusion 3	34
Cytokines and chemokines related to macrophages 3	8
Macrophage apoptosis 4.	-5
Autophagy in Immune Defense against <i>M. tuberculosis</i> 48	8
Role of T lymphocytes 5.	3
CD4+ T cells 54	4
Th1 and Th2 dichotomy in TB 54	4
Regulatory T cells 5	55
CD8+ T cells 5	58
Gamma/delta T cells 6	51
Humoral immune response 6	53
Tuberculosis and HIV 6	6
Tuberculosis immunology in children 69	9
TB vaccination 73	3
Summary 83	3
References 80	6
Arabic summary	

LIST OF FIGURES

Figure	Subject	Page
Figure 1	Computerized tomography showing lesions in the vertebral bodies of dorsal spine.	4
Figure 2	C-type lectins and Toll-like receptors: pathogen receptors on dendritic cells.	18
Figure 3	M. tuberculosis target DC-SIGN through ManLAM to suppress cellular immune responses mediated by DCs.	20
Figure 4	Neutrophils ingest Mycobacterium tuberculosis.	23
Figure 5	Role of macrophage in immunity.	27
Figure 6	Activation of macrophages.	28
Figure 7	Phagocytosis and immune recognition of <i>M. tuberculosis</i> .	31
Figure 8	Phagosome maturation in cells infected with Mycobacterium.	33
Figure 9	Schematic view of the endocytic pathway.	35
Figure 10	The fusion of phagosomes with lysosomes is Ca2+ dependent.	36

Figure 11	PknG affects the intracellular traffic of <i>M. tuberculosis</i> in macrophages.	37
Figure 12	The intracellular lifestyle of <i>Mycobacterium tuberculosis</i> .	38
Figure 13	Innate immunity in tuberculosis.	39
Figure 14	Cytokines and cytokine receptors involved in immunity in tuberculosis.	40
Figure 15	Key functions of Tumour Necrosis Factor (TNF) in Tuberculosis.	42
Figure 16	Main pathways of apoptosis.	46
Figure 17	Process of autophagy.	49
Figure 18	Functions of autophagy in innate and adaptive immunity.	50
Figure 19	Antigen processing / presentation pathways and activation of different T- cell subsets.	53
Figure 20	Cross-priming as a major mechanism for stimulation of major histocompatibility complex (MHC) I.	59
Figure 21	CD8+ T cells role in the control of <i>M. tuberculosis</i> infection.	60
Figure 22	One possible mechanism that illustrate the immunology of IRIS in a subject with HIV/TB coinfection.	68

Figure 23	Immune response of helminthic/TB coinfection.	71
Figure 24	The immune response to <i>M. tuberculosis</i> infection or vaccination with BCG or recombinant modified BCG.	76

LIST OF ABBREVIATIONS

1, 25 (OH)₂ D3 1, 25 dihydroxy vitamin D 3

Ag 85 B Antigen 85 B

AIDS Acquired immune deficiency syndrome

APC antigen presenting cell

BCG Bacillus Calmette- Guérin

C3 Complement factor 3

Ca MK II Ca2+/calmodulin-dependent kinase II

CCR 2 Chemokine receptor 2

CFP – 10 10 KDa culture filtrate protein

CFU Colony forming unit

CR 3 Complement receptor 3

DC Dendritic cell

DC – SIGN Dendritic cell – specific intercellular – adhesion –

molecule – grabbing – non integrin

EEA1 Early endosomal antigen 1

ELISA Enzyme linked immune sorbent assay

ER Endoplasmic reticulum

ESAT – 6 6 KDa early secretory antigen target

FAS Factor of apoptotic signal

FASL FAS ligand

FGF – 2 Fibroblast growth factor 2

FoxP₃ Fork head box P3

GM – CSF Granulocyte/macrophage colony stimulating factor

HAART Highly active anti retroviral therapy

HBD – 2 Human beta defensin 2

HIV Human immune deficiency virus

HLA Human leucocytic antigen

HNP – 1 Human neutrophil defensin peptide 1

HNP – 2 Human neutrophil defensin peptide 2

IFN $-\gamma$ Interferon gamma

Ig Immunoglobulin

IL Interleukin

IL – 1R Interleukin 1 receptor

IL – 1RA Interleukin 1 receptor antagonist

iNOS Inducible nitric oxide synthase

IRAK Interleukin 1 receptor associated kinase

IRIS Immune reconstitution inflammatory syndrome

LAM Lipo Arabino mannan

LAMP1 lysosomal-associated membrane protein-1

LBPA Lysobisphosphatidic acid

LPS Lipopoly saccharide

LTBI Latent tuberculosis infection

M. bovis Mycobacterium bovis

M. tuberculosis Mycobacterium tuberculosis

ManLAM Mannose capped Lipo Arabino mannan

mBD – 3 Murine beta defensin 3

mBD – 4 Murine beta defensin 4

MBL Mannose binding lectin

MBP Mannose binding protein

MCP Monocyte chemotactic protein

MHC major histocompatibility complex

MIF Macrophage migration inhibitory factor

MIP Macrophage inflammatory protein

MR Mannose receptor

Mtb Mycobacterium tuberculosis

MyD88 myeloid differentiation protein 88

 $NF_{-\kappa}B$ nuclear factor- κB

NK Natural killer

NO Nitric oxide

NRAMP – 1 Natural resistance associated macrophage protein 1

PAF Platelet activating factor

PAS Para amino salt of aspirin

PBMC Peripheral blood mononuclear cells

PI(3)P Phosphatidyl inositol 3 phosphate

PKnG Protein kinase G

PPD Purified protein derivative

RANTES Regulated on activation, normal T expressed and

secreted

rBCG Recombinant Bacille-Calmette- Guérin

rBCG – pfo Recombinant Bacille-Calmette- Guérin perfringolysin

S1P Sphingosine 1 phosphate

SATVI South African tuberculosis vaccine initiative

SLC11A1 solute carrier family 11, member 1

SOD Superoxide dismutase

TAP Transporter associated with antigen presentation

TB Tuberculosis

TGF - β Transformation growth factor beta

Th1 T helper lymphocyte 1

Th2 T helper lymphocyte 2

TLRs Toll like receptors

TNF - α Tumour necrosis factor alpha

TNFR Tumour necrosis factor receptor

T_{reg} Regulatory T lymphocytes

TST Tuberculin skin test

 $T\gamma\delta$ T gamma delta lymphocyte

UreC Urease gene

VDR Vitamin D receptor

VEGF Vascular endothelial growth factor

WHO World health organization

XDR – TB Extensively drug resistant TB

INTRODUCTION AND AIM OF WORK

Tuberculosis (TB) remains the single largest infectious disease causing high human mortality leading to 3 million deaths annually. A clear understanding of the immune responses towards the pathogen will be important for achieving optimal immunity, vaccine development, new therapeutic targets, and more precise diagnostic methods for combating this terrible illness (**Skeiky and Sadoff, 2006**).

Genome studies on families affected with tuberculosis have enabled the identification of several candidate genes, human leucocytic antigen (HLA) and non HLA genes that are associated with susceptibility to TB (Bellamy et al., 2000).

Essential to effective TB immunity are functioning neutrophils, natural killer (NK) cells, dendritic cells (DCs), mast cells, definsins, and epithelial cells (Bals, 2004).

The macrophage is the primary main host cell for *Mycobacterium* tuberculosis (M. tuberculosis) (Means et al., 2001), and activated macrophages represent a link between innate and cell mediated immunity (Hestvik et al., 2005).

Various aspects of macrophage-mycobacterium interactions and the role of macrophage in host response have been discovered, such as binding of *M. tuberculosis* to macrophages via surface receptors, phagosome-lysosome fusion, mycobacterial growth inhibition/killing mechanisms (**Raja, 2004**).

Macrophage apoptosis occurs within the granuloma. This histological process favors host immunity, but *M. tuberculosis* is capable of partially suppressing it. The pro- and anti-apoptotic activities of *M. tuberculosis* may be necessary to establish a persistent infection (**Briken et al., 2004**).

It has become evident that autophagy serves as a powerful mechanism for removal of *M. tuberculosis* infection (**Deretic, 2005**).

The T cell response to M. tuberculosis is a complex event which involves a variety of T cell subsets (CD4+ T cells, CD8+ T cells, gamma/delta ($\gamma\delta$) T cells and regulatory T (T_{reg}) cells) involving a combination of protection, cytolysis, and memory immunity (**Keshinro and Diul, 2006**), together with strong T helper 1 (Th1) type T cell immunity, and relative absence of T helper 2 (Th2) type T cell immunity (**Vesosky et al., 2006**).

TB is the commonest opportunistic infection occurring among human immune deficiency virus (HIV) positive persons, with a higher proportion of extra pulmonary or disseminated disease as well as higher frequency of false negative tuberculin skin test (TST) cases (Rosas-Taraco et al., 2006).

Critical differences exist between adult and children as regards their TB immunity including deficiencies in macrophages and DCs function, deficiencies in the development of Th1 response to *M. tuberculosis* and the propensity for children to develop Th2 response (**Lewinsohn et al., 2004**).

Although Bacillus Calmette- Guérin (BCG) seems to provide protection against disseminated disease in newborns and children, its efficacy against pulmonary TB in adults is poor, which highlights the need for a better vaccine regimen. Such vaccines include recombinant BCG (rBCG), attenuated strains of *M. tuberculosis*, subunit vaccine approaches and live, non-replicating viral vector-based delivery systems used alone or in prime-boost regimens. A challenge facing the development of these new vaccines is their safety (**Skeiky and Sadoff, 2006**).