EFFECT OF PLANTING DATES AND CALCIUM SPRAYING ON POSTHARVEST QUALITY OF HEAD LETTUCE

\mathbf{BY}

EHAB SALAH EL-DIN HAMED

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2001

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF PLANTING DATES AND CALCIUM SPRAYING ON POST HARVEST QUALITY OF HEAD LETTUCE

BY

EHAB SALAH EL-DIN HAMED

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2001

This thesis for M. Sc. degree has been approved by

Prof. Dr. Shamel Ahmad Shanan
Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, El-Azhar University

Prof. Dr. Abd EL-Rahim Sharaf Abd El-Monem
Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams University

Prof. Dr. Mohamed Emam Ragab
Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University

Prof. Dr. Ahmed Mahmoud El-Gizawy
Prof. of Vegetable Crops, Dean for Faculty of Agriculture, Ain Shams University

Date of Examination 25 / 10 / 2007

EFFECT OF PLANTING DATES AND CALCIUM SPRAYING ON POSTHARVEST QUALITY OF HEAD LETTUCE

BY

EHAB SALAH EL-DIN HAMED

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2001

Under the supervision of:

Prof. Dr. Ahmed Mahmoud EL- Gizawy

Prof. of Vegetable Crops, Dept. of Horticulture, Dean for Faculty of Agriculture, Ain Shams University (principal supervisor)

Prof. Dr. Mohamed Emam Ragab

Prof. of Vegetable Crops, Dept. of Horticulture Faculty of Agriculture, Ain Shams University

Dr. Ahmed Abou EL-Yazied Abd EL-Hafize

Associate Prof. of Vegetable Crops, Dept. of Horticulture Faculty of Agriculture, Ain Shams University

ABSTRACT

EHAB SALAH EL-DIN HAMED, Effect of Planting Dates and Calcium Spraying on Postharvest Quality of Head Lettuce. Unpublished M.Sc.Thesis, Ain Shams Univ., Faculty of Agriculture, Horticulture Dept., 2007.

This work was carried out at Nikla village, Giza governorate, during 2002 /2003 and 2003/2004 seasons to evaluate the effect of three planting dates (the first of each of October, November and December), and foliar application of 0, 200, 400 and 600 ppm chelated calcium on vegetative characteristics (fresh and dry weight, head size and number of leaves per plant) and percentage of tipburn injury of head lettuce cv. Limor, as well as several post harvest treatment such as different wrapping material (perforated poly propelin, stretch polyethylene and without wrapping) to prolonging the cold storage period of Limor Head lettuce Plants, and brown stem practices (hot water 50 °C /90 sec, acetic Acid (3% and 6%), citric acid (0.5%), Na Cl 2%, oxalic acid 3%, Ca Cl₂ 0.5 % and distaeld water (control)) for maximizing the yield and quality of harvested lettuce to be acceptable for exporting. The results indicated that seed sown on the first of December increased head size and Ca concentration in leaves compared to other sowing dates. But there were no significant diffrance among planting dates in head fresh and dry weight, number of leaves per plant and percentage of tipburn. Whereas foliar spray with chelated calcium reduced and prevented tipburn injury and increased percentage of Ca concentration in leaves but had no significant effect on fresh and dry weight and number of leaves per plant. Thus, foliar spray with 600 ppm chelated Ca in the three planting dates gave the best results and prevented tipburn incidence. On the other hand, wrapping with perforated poly

propelin gave the best result in head lettuce over visual quality and reducing decay percentage, pink rib and russet spotting. Whereas stem browning inhibitors reduced poly phenol oxidase activity and obtained good result, by using acetic acid 6% & hot water 50 °C /90 sec.

Keywords: Head lettuce, *Lactuca sativa* var., capitata. L., Chelated calcium, Foliar application, Planting dates, Tipburn, Wrapping, Stem browning, Poly phenol oxidase.

ACKNOLEDGEMENT

The writer whishes to express his great thanks and deep gratitude to **Dr. Ahmed Mahmoud EL- Gizawy**, Professor. of Vegetable Crops and Dean for Faculty of Agriculture, Ain Shams University, for suggesting the current study, his supervision and help during the course of this study, during preparing and reviewing the manuscript.

Deep gratitude and thanks is also due to **Dr. Mohamed Imam Ragab**, Professor of Vegetable Crops, Faculty of Agriculture, Ain Shams University, for his kind supervision, advice, valuable assistance, during the preparation of this thesis.

I would like to thank **Dr. Ahmed Abou EL- Yazied Abd EL-Hafize**, Assistant Professor of Vegetable Crops, Faculty of Agriculture, Ain Shams University, for his supervision, great support and continued help during the preparation of this work.

Thanks are also extended to Zein El-Din farm, Giza, Egypt. Sincere thanks are due to **Mr. Hany Gamal Metwally**, Assistant Lecturer and all the staff members of the Department of Horticulture, Faculty of Agriculture, Ain Shams University for their encouragement and help during the course of this work.

Finally, deepest gratitude for my family for their continuous help and encouragement through this work.

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Effect of sowing dates:	4
2.2. Effect of calcium foliar application:	9
2.3. Effect of wrapping film and storage period:	15
2.4. Effect of browning inhibitors on stem browning	18
3. MATERIALSANDMETHODS	28
3.1 Metrological data	28
3.2 The experiment layout	29
3.3 Effect of sowing dates and chelated calcium folia	•
application on tipburn of head lettuce	30
3.3.1. Sowing date treatment	31
3.3.2. Calcium foliar application	32
3.3.3.Studied characteristics	32
3.3.3.1. Vegetative characteristics	32
3.3.3.2. Chemical analyses	33
3.4. Effect of wrapping film and storage period	33
3.5. Effect of browning inhibitors on stem browning:	37
4. RESULTS AND DISCUSSION	40
4.1. Effect of sowing dates and chelated calcium foliar	•
application on tipburn of head lettuce	40
4.1.1. Vegetative characteristics	40
4.1.1. 1. Head fresh weight	40
4.1.1. 2. Head dry weight:	42
4.1.1. 3. Number of leaves per plant	44
4.1.1. 4. Head size	45
4.1.1. 5. Tipburn percentage	47
4.1.2. Chemical analyses	50
4.1.2.1. Chlorophyll content in outer leaves of head	50
4.1.2.2. Calcium content in heads	51

4.2.	Effect	of	wrapping	film	and	storage	period	on
S	torabilit	ty of	head lettu	ce				53
4.2	.1. Over	visu	al quality					53
4.2	.2. Pink 1	rib						56
4.2	.3. Russe	et spe	otting					59
4.2	.4. Stem	brov	vning					62
4.2	.5. Weig	ht lo	ss %					65
4.2	.6. Decay	y%			•••••			68
4.2	.7. L Asc	orbi	c acid (L.A	.A.) co	ntents			71
4.3. E	Effect of	bro	wning inhil	oitors o	on (Pl	PO) activ	ity in he	ad
	lettuce	sten	n during co	ld stor	age			74
4.3	3.1. Aceti	ic ac	id 6%		• • • • • • • • • • • • • • • • • • • •			76
4.3	3.2. Aceti	ic ac	id 3%		• • • • • • • • • • • • • • • • • • • •			78
4.3	3.3 Citric	Aci	d (0.5%)					80
4.3	3.4. Asco	rbic	acid 0.25%					82
4.3	3.5. Oxali	ic A	cid 3%		• • • • • • • • • • • • • • • • • • • •			84
4.3	.6. NaCl	(29	6)					86
4.3	3.7. CaCl	2 0.5	%					88
4.3	3.8. Hot v	vate	(50°C/90	Sec)	• • • • • • • • •			90
5. SU	MMERY	AN	ND CONCI	LUSIO	N	• • • • • • • • • • • • • • • • • • • •	•••••	93
6. RE	FEREN	CES	•••••	•••••	• • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	97
7. AR	ABIC SI	JMN	MERY					108

LIST OF TABLES

Table No. Pa	age
Table (1): Chemical and physical analyses of the soil at Zein El- Din farm, Nikla village, Giza	20
Table (2): Monthly average of daily temperature and relative humidity (RH %) of Nikla village, Giza. during	28
2002/2003 and 2003/2004 seasons	29
Limor	42
hand lettered our Limen	43
cv. Limor	45
Table (7): Effect of planting dates and chelated calcium foliar application on percentage of tipburn of head lettuce cv.	47
Table (8): Effect of planting dates and chelated calcium foliar application on chlorophyll content (mg/100gm	48
fresh weight) of head lettuce cv. Limor	51
application on calcium concentration (ppm/100 g DM.) of head lettuce cv.Limor	52

Table (1	0): Effect of wrapping materials on head lettuce cv. Limor) appearance (OVQ) during cold storage at (1±1 °C & 95 %	
	RH)	54
Table (1	1): Effect of wrapping materials on head lettuce (limeor cv) appearance(OVQ) during storage at room temp (25±2°C and 60%RH)	56
Table (1	2): Effect of wrapping materials on head lettuce cv. Limor	
	pink rib during cold storage at (1±1°C & 95 % RH)	57
Table (1	3): Effect of wrapping materials on head lettuce cv. Limor pink rib during storage at room temp (25±2°C and	
Table (1	60% RH)	59
Table (1	RH)	60
	and 60%RH)	62
Table (1	6): Effect of wrapping materials on head lettuce cv. Limor stem browning during cold storage at (1±1 °C & 95 %	
Table (RH)	6365
Table (18): Effect of wrapping materials on head lettuce cv. Limor weight loss% during cold storage at (1±1 °C & 95 % RH)	66
Table (19): Effect of wrapping materials on head lettuce cv. Limor weight loss% during storage at room temp (25±2°C and 60%RH)	67

Table (20):	Effect of wrapping materials on head lettuce cv.	
	Limor decay% during cold storage at (1±1 C & 95 %	60
T.11 (21)	RH)	69
Table (21):	Effect of wrapping materials on head lettuce cv.	
	Limor decay% during storage at room temp (25±2 C	
	and 60% RH)	70
Table (22):	Effect of wrapping film and storage period on L	
	Ascorbic acid (L.A.A.) contents of head lettuce cv.	
	Limor during cold storage at (1±1 C & 95 %	
	RH)	72
Table (23):	Effect of wrapping film and storage period on L	
	Ascorbic acid (L.A.A.) contents of head lettuce cv.	
	Limor at room temperature (25±2°C and 60%RH)	73
Table (24):	Activity of PPO as changes in O.D in zero time	
	sample before Storage	75
T-1-1- (25).		13
Table (25):	Activity of PPO as changes in O.D in control sample.	
T 11 (26)	(Washed by water stored 7 days at 3 C	75
Table (26):	Effect of acetic acid 6% treatment on (PPO) activity	
	in head lettuce stem during cold storage	76
Table(27):	Effect of acetic acid 3% treatment on (PPO)	
	activity in Head lettuce stem during cold storage	78
Table (28):	Effect of Citric Acid (0.5%) treatment on (PPO)	
	activity in head lettuce stem during cold storage	80
Table (29)	: Effect of ascorbic acid 0.25% treatment on (PPO)	
	activity in head lettuce stem during cold	
	storage	82
Table (30):	Effect of oxalic acid 3% treatment on (PPO) activity	
	in head lettuce stem during cold storage	84
Table (31):	Effect of NaCl 2% treatment on (PPO) activity in	
	head lettuce stem during cold storage	86

Table (32): Effect of CaCl ₂ 0.5% treatment on (PPO) activity in	
head lettuce stem during cold storage	88
Table (33): Effect of hot water (50°C /90 Sec) treatment on (PPO)	
activity in head lettuce stem during cold storage	90

LIST OF FIGURES

Figur No.	Page
Fig. (1): A diagrammatic model for tipburn development is	n
lettuce	. 11
Fig. (2): The interrelationship between wounding lettuce lea	af
tissue and the subsequent induced change in phenol	ic
metabolism	. 25
Fig. (3): Color chart scale (0-13)	36
Fig. (4): Percentage of tipburned head lettuce plants / plot a	as
affected by chelated calcium foliar application	50
Fig (5): Effect of acetic acid 6% treatment on (PPO) activity	in
head lettuce stem during cold storage	77
Fig (6): Effect of acetic acid 3% treatment on (PPO) activity	in
head lettuce stem during cold storage	79
Fig (7): Effect of citric acid (0.5%) treatment on (PPO) activity	
in head lettuce stem during cold storage	81
Fig (8): Effect of ascorbic acid 0.25% treatment on (PPe	
activity in head lettuce stem during cold storage	83
Fig (9): Effect of oxalic acid 3% treatment on (PPO) Activity	
head lettuce stem during cold storage	85
Fig (10): Effect of NaCl (2%) treatment on (PPO) activity	
head lettuce stem during cold storage	
Fig. (11): Effect of CaCl ₂ 0.5% treatment on (PPO) Activity	07
head lettuce stem during cold storage	
Fig. (12): Effect of hot water (50°C /90 Sec) treatment on (PP	0)
activity in head lettuce stem during cold storage	
Figs.(13):The difference between all browning inhibitor	71
treatments in the study	
deatherts in the study	··· 71

VIII

Abbreviations used in this Thesis

Abbreviation Meaning of abbreviation

A.O.A.C. Association of official agricultural chemists

°C Degree Celsius

Cm, Cms Centimeter, Centimeters

D.W. Dry Weight

Fed Feddan = 4200m²

g, gm Gram

ha. $Hectare = 10000m^2$

Kg Kilogram

L.A.A. L-Ascorbic acid m² Square meter mm Millimeter

M.S. M-static software

Max. Maximum
Min. Minimum
mg Milligram
ml Milliliter

R.H. Relative humidity

SD Sowing date

t Ton

WL. Weight loss

HDP Head decay percentage
OVQ Overall visual quality
PPO Poly phenol oxidase

PAL Phenylalanine ammonia-lyase

PPP Perforated poly propelin SPE Stretch poly ethylene

RS Russet spotting
O.D Optical density

Cont. Control Sec Second