

STRUCTURAL BEHAVIOR OF BEAMS COMBINING ULTRA HIGH STRENGTH CONCRETE AND NORMAL STRENGTH CONCRETE

By

Ahmed Mohamed ISMAIL

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in partial fulfillment of the
Requirements for the degree of
DOCTOR OF PHILOSOPHY

In STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

STRUCTURAL BEHAVIOR OF BEAMS COMBINING ULTRA HIGH STRENGTH CONCRETE AND NORMAL STRENGTH CONCRETE

By AHMED MOHAMED ISMAIL ABU GAHIN

A Thesis Submitted to the

Faculty of Engineering at Cairo University
in partial fulfillment of the

Requirements for the degree of

DOCTOR OF PHILOSOPHY

In

STRUCTURAL ENGINEERING

Under the supervision of

Prof. Dr. Ahmed Mahmoud Ragab

Professor

Structural Engineering Dept.

Faculty of Engineering

Cairo University

Prof .Dr. Mohamed Mohsen El Attar

Prof.Dr.Hosam Zakaria El-Karmoty

A. Ragab

Professor

Structural Engineering Dept.

Faculty of Engineering

Cairo University

Professor

Building Materials Research and Quality

Control Institute

Housing & Building National Research

Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2018

STRUCTURAL BEHAVIOR OF BEAMS COMBINING ULTRA HIGH STRENGTH CONCRETE AND NORMAL STRENGTH CONCRETE

By AHMED MOHAMED ISMAIL ABU GAHIN

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In partial fulfillment of the
Requirements for the degree of
DOCTOR OF PHILOSOPHY

In

STRUCTURAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Ahmed	Mahmoud	Ragab
-----------------	---------	-------

A. Ragab

Dr. A.V. alm

Prof. Dr. Mohamed Mohsen El-Attar

11017

Prof. Dr. Hosam Zakaria El-Karmoty

Professor in Housing & Building National Research Center

Prof. Dr. Mohamed Ismail Abd El-Aziz Serag

Prof. Dr. Hadad Saeed Hadad

Professor in Housing & Building National Research Center

Haded Sand Hodol

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer: Ahmed Mohamed Ismail Abu Gahin

Date of Birth: 21 / 4 / 1979

Nationality: Egyptian

E-mail: ah_gaheen79@yahoo.com Phone.: 01097620585 - 0225502938 Address: 15 may city region 9 sector d

Registration Date: 1/3/2011 Awarding Date: //2018

Degree : Doctor of Philosophy
Department: Structural Engineering

Supervisors: Prof. Dr. Ahmed Mahmoud Ragab

Prof. Dr. Mohamed Mohsen El-Attar

Prof. Dr. Hosam Zakaria El-Karmouty (Professor in Housing & Building

National Research Center)

Examiners: - Prof. Dr Hadad Saeed Hadad

(Professor in Housing & Building National Research Center)

- Prof. Dr Mohamed Ismail Abd El-Aziz Serag
 - Prof. Dr. Ahmed Mahmoud Ragab
 Internal Examiner
 Thesis Main Advisor

- Prof. Dr. Mohamed Mohsen El-Attar
 - Prof. Dr. Hosam Zakaria El-Karmouty

Advisor

(Professor in Housing & Building National Research Center)

Title of Thesis: " Structural Behavior Of Beams Combining Ultra High Strength Concrete

And Normal Strength Concrete "

Key Words: Ultra High Strength Concrete, Composite Sections, Static Loads, Beams

This thesis present a study on the structural behavior of UHSC, NSC and composite beams using (UHSC) and (NSC) with the effect of different parameters under the static loads effect. This study aims mainly to reach the optimum thickness of UHSC layer in composite beams. This experimental program consists of ten reinforced concrete beams, with different parameters, which were longitudinal reinforcement ratio, type of used concrete and the thickness of UHSC layer. In addition, this research presents analytical models for beams that have been practically tested. Then the results were discussed and analyzed with a comparison between the experimental and the theoretical results.

External Examiner

DEDICATION

To My Dear great Father to whom I owe too much For his encouraging & to whom I will always miss him in all my life moments.

To My Dear Mother, to whom I owe and love too much, for her personal support.

God save her & gives her good Health.

To My Dear wife for her patience and support.

To My Sweety Kids YASMINE & YOUSSOF

ACKNOWLEDGEMENTS

First of all, all my gratitude to **GOD** who guided and aided me in completing this thesis.

I wish to express my great appreciation to Prof.Dr. Mohamed Mohsen El-Attar, Professor, Structural Engineering department, Faculty of Engineering, Cairo University for his Kindly support, supervision, helpful guidance, and valuable advice during execution my work in this thesis .

I also like to express my deep indebtedness and great appreciation to Prof.Dr. Hosam Zakaria EL-Karmouty, Professor, in the Building Materials Research and Quality Control Institute Housing & Building National Research Center for his generous guidance and encouraging, sincere help, consistent support by all means and asking, valuable suggestion, and precise advice through all stage of my work.

I want to express my great appreciation to Dr.Fatima Al-Zahraa in the Building Materials Research and Quality Control Institute Housing & Building National Research Center for her continuous help, support and encouraging by all meanings until finishing successfully my PHD thesis. Finally, I kindly wish to offer also my gratitude and sincere thanks to Dr.Enas Khattab in the Building Materials Research and Quality Control Institute Housing & Building National Research Center for her advices and guidance in an important part in this thesis, which help me to easily continue the rest of my works.

TABLE OF CONTENTS

	Page
DEDICATION	I
ACKNOWLEDGEMENT	П
TABLE OF CONTENTS	III
List of Tables	VIII
List of Figures	IX
List of Photos	XVI
ABSTRACT	XIX
CHAPTER 1 :INTRODUCTION	
1.1 General	1
1.2 Objectives	2
1.3 Plan of The Research	3
1.4 Thesis Layout	3
CHAPTER (2):LITERATURE REVIEW	5
2.1 General	5
2.2 Composite Elements	6
2.3 Ultra High Strength Concrete As An Advanced Cementitious Materials	7
2.4 History Of Development And Application of Ultra-High Strength Concrete	8
2.5 Properties And Special Component of Ultra High Strength/ Performance	10
Concrete	
2.5.1 Modulus of Elasticity and Compressive Strength	10
2.5.2 Effect of Steel Fibers on Ultra High Strength Concrete Properties	11
2.5.3 Effect of Silica Fume on Ultra High Strength Concrete Properties	14
2.6 Flexural behavior of beams for Normal-strength, High and Ultra High strength concrete	15
2.7 Equivalent stress block for Normal-strength, high and Ultra-High strength concrete	18
2.8 Basic Structural Properties That Affect The Behavior of Structural Members	20

2.8.1 Ductility	20
2.8.1.1 Factors affecting Ductility	22
2.8.1.1.1 Concrete Compressive strength	22
2.8.1.1.2 Reinforcement Ratio:	22
2.8.2 Stiffness	22
2.8.3 Toughness	23
CHAPTER (3): EXPERIMENTAL PROGRAM	38
3.1 General	38
3.2 Experimental and Parameter Description	38
3.3 Materials & Quality Control of Tested Specimens	38
3.3.1 Concrete	38
3.3.1.1 Mix Constituents:	39
3.3.1.1.1cement	39
3.3.1.1.2 Aggregates	39
3.3.1.1.2.1 Coarse Aggregate	39
3.3.1.1.2.2 Fine Aggregate	40
3.3.1.1.3 Fillers	40
3.3.1.1.4 Additives	40
3.3.1.1.4.1 Silica Fumes	40
3.3.1.1.4.2 Chemical Admixture	40
3.3.1.1.4.3 Sikament-163M	40
3.3.1.1.4.4 Mixing Water	40
3.3.1.2 Concrete Mixing And Design:	41
3.3.1.2.1 Mix Design	41
3.3.1.2.2 Mixing:	41
3.3.1.2.3 Placing And Curing:	41
3.3.2 Reinforcing Steel	42
3.3.3 Description of The Test Specimens	42
3. 4 Setup of Tested Beams and Test Procedure	43
CHAPTER 4:ANALYSIS AND DISCUSSION OF EXPERIMENTAL RESULTS	66
4.1 Introduction	66
4.2 Details Of Beam Specimens	66

4. 3 Experimental Results		67
4.3.1 Analysis of The Tested Specimens:		67
4.4 Analysis And Discussion Of The Effect Of The Different Variables On The		72
Beams Stru	actural Behavior	
4.4.1 Analys	is Measurements	72
4.4.1.2	Duetility	72
4.4.1.3	Toughness	73
4.4.2 Discus	ssion Of Analysis Results	73
4.4.2.1	Effect Of Longitudinal Steel Ratio	73
4.4.2.2	Effect of Concrete type and Thickness	74
Chapter (5):	THEORETICAL ANAYSIS OF UHSC, NSC AND	<u>116</u>
COMPOSIT	TE REINFORCED CONCRETE BEAMS	
5-1 Introduction	on	116
5-2 Material Modeling		116
5-2-1 Norm	al Strength Concrete	116
5-2-2 Ultra-	High Strength Concrete	117
5-2-3 Comp	osite Concrete	118
5-2-4 Steel	Reinforcement	118
5-3 Models Ca	alculations And Assumptions	118
5-3-1calcula	ation Of Moment-Curvature Relationship And Deflection	118
Predic	etion	
5-3-1-1 Ca	alculation Of Moment -Curvature Relationship	118
5.3.1.1.1	Normal Strength Concrete Sections	119
5.3.1.1.2	Ultra-High Strength Concrete Sections	120
5.3.1.1.3	Composite Concrete Sections:	121
5. 3.1.2 De	eflection Prediction	123
5.4 Comparison	n Between The Theoretical And The Experimental Results	123
5.5 Additional	Parametric Study	124
5.6 Analysis And Discussion Of Parametric Study		125
CHAPTER	6: CONCLUSIONS AND RECOMMENDATIONS	<u>146</u>
6.1 General		146
6.2 Research Objective		146

6.3 Conclusions	147
6.3.1 The Effect Of The Longitudinal Reinforcement Ratio Upon The	147
Behavior Of NSC, UHSC And Composite Beams	
6.3.2 The effect of concrete type and UHSC layer thickness (NSC, UHSC and	148
Composite Beams) Under the Same Ratio of Longitudinal	
Reinforcement	
6.3.3 Theoretical study through simulation of three models and the additional	149
parametric study	147
6.4 Recommendations	149
6.5 Future Work Recommendations	150
REFERENCES	151

LIST OF TABLES

Table No	Title	Pages
2.1	Mix of Ultra- High- Strength Concrete	30
2.2	Material properties of Ultra- High- Strength Concrete	30
2.3	Rectangular Stress Block Parameters in Different Design Codes	34
2.4	Proposed Rectangular Stress Block Parameters in Different	25
	Publications	35
3.1	Physical Properties of the Used Cement (CEM I 42.5N)	44
3.2	Chemical Properties of the Used Cement (CEM I 42.5N)	44
3.3	Properties of Coarse Aggregate	45
3.4	Dolomite Grading	45
3.5	Physical and Mechanical Properties of Natural Coarse Aggregate	45
3.6	Chemical Properties of Natural Coarse Aggregate	46
3.7	Grading of Natural Coarse Aggregate	46
3.8	Physical Properties of Fine Aggregate	46
3.9	Fine Aggregate Grading	47
3.10	Chemical Composition of the Used Quartz	47
3.11	Physical Properties of the Silica Fume	47
3.12	Chemical Composition of the Silica Fume	48
3.13	UHSC Mix Proportions	48
3.14	Normal Strength Concrete Mix Proportion	49
3.15	Compressive Strength of All Specimens	49
3.16	Mechanical Properties of the used High Grade Steel Bars	50
3.17	Details of test specimens	50
4.1	Tested Specimens Parameters and Variables	77
4.2	Arrangement of Group of Beams specimens according to the	77
	chosen parameter:	
4.3	Summary of Experimental Results of Flexural Beam Specimens:	78
4.4	Summary of Results Analysis Of Beam Specimens	78
5 1	Fauilibrium and Strains Compatibility Fauations for UHSC	

	NSC and Composite beams cross sections	126
5.2	Experimental And Theoretical Analysis Results	126
5.3	Groups of Additional parameter Beams	127
5.4	Results of the additional parametric study	128

LIST OF FIGURES

Figures		Page
2.1	Definition of a Composite Member Consisting of Two Different	
2.1	Cementitious Materials With Reinforcement	26
2.2	Composite "UHPFRC-concrete" bridge deck	26
2.3	Cross-section of the composite "UHPFRC-concrete" beams	26
2.4	Basic Configurations of Composite "UHPFRC-Concrete" Elements	27
2.5	Cross section of RU-RC slab cross section	27
2.6	Relationship Between Modulus of Elasticity And Compressive Strength	27
	Stress Strain Diagrams of Concrete Illustrating :Increasing Brittleness With	
2.7	Increased Strength (A) And Use of Ductility Improving Measures Such as	28
	Fiber Reinforcement And External Confinement(b)	
2.8	Comparison of The Performance Characteristics Of Plain, Conventional	
	Fiber Reinforced, And High Performance Cementitous Composites (a), and a	28
	Conceptual View of The Influence of Fiber Length on The Crack Tip And	28
	Mechanical Behavior (b)	
2.9	Influence of Steel Fiber Content on Compressive Strength For Mixes	28
2.10	Effect Of Steel Fibers on The Concrete Compressive Stress-Strain Curve	29
2.11	Influence of Silica Fume Content On Compressive Strength for Mixes	29
2.12	Strain, Stress, and Force Diagrams	29
2.13	Failure modes of composite "UHPFRC-concrete" beams for a) A negative,	30
2.13	b) A positive bending moment	30
2.14	Specimens Setup	31
2.15	Hognestad's test set-up for derivation of concrete stress block	31
	Concrete stress block parameters: (a) cross-section, (b) strain distribution; (c)	
2.16	stress-strain curve under flexure; actual stress distribution at ultimate state;	32
2.10	(d) actual stress distribution at ultimate state; (e) equivalent rectangular stress	32
	block.	
2.17	Previously Suggested Stress Block Combination	32
2.18	Strain and Stress Distribution Of Ultra-High Performance Concrete Section.	33
2.19	Stress block models. For the Nine proposed models	33
2.20	Stress Block Models. For The Nine Proposed Models	34

2.21	Definitions of Δ max and Δ y For Ductility calculations	35
2.22	Effect Of Concrete Compressive Strength On Curvature Ductility	36
2.23	Definition of Initial and Secant Structural Stiffness	36
2.24	Definition of Initial and Secant Structural Stiffness	37
3.1	Schematic Representation of The Tested Specimens	53
3.2	Sieve Analysis of Dolomite Size 0.5	54
3.3	Grading of Natural Coarse Aggregate	54
3.4	Details of Specimen B1	55
3.5	Details of Specimen B2	56
3.6	Details of Specimen B3	57
3.7	Details of Specimen B4	58
3.8	Details of Specimen B5	59
3.9	Details of Specimen B6	60
3.10	Details of Specimen B7	61
3.11	Details of Specimen B8	62
3.12	Details of Specimen B9	63
3.13	Details of Specimen B10	64
3.14	Test Setup	65
4-1	Load-Deflection Relationship of Beam B1	79
4.2	Load-Steel compression Strain Relationship of Beam B1	79
4.3	Load-Steel Tension Strain Relationship of Beam B1	80
4.4	Load-Concrete Compression Strain Relationship of Beam B1	80
4.5	Load-Deflection Relationship of Beam B2	81
4.6	Load-Steel compression Strain Relationship of Beam B2	82
4.7	Load- Tension Steel Strain Relationship of Beam B2	82
4.8	Load-Concrete Compression Strain Relationship of Beam B2	83
4.9	Load-Deflection Relationship of Beam B3	84
4.10	Load-Deflection Relationship of Beam B4	86
4.11	Load-Steel Tension Strain Relationship of Beam B4	86
4.12	Load-Concrete Compression Strain Relationship of Beam B4	87
4.13	Load-Deflection Relationship of Beam B5	88
4.14	Load-Steel Tension Strain Relationship of Beam B5	88
4.15	Load-Deflection Relationship of Beam B6	90

4.16	Load-Steel Tension Strain Relationship of Beam B6	90
4.17	Load-Concrete Compression Strain Relationship of Beam B6	91
4.18	Load-Deflection Relationship of Beam 7	93
4.19	Load-Steel Tension Strain Relationship of Beam B7	93
4.20	Load-Concrete Compression Strain Relationship of Beam B7	94
4.21	Load-Deflection Relationship of Beam B8	96
4.22	Load-Steel Tension Strain Relationship of Beam B8	96
4.23	Load-Concrete Compression Strain Relationship of Beam B8	97
4.24	Load-Deflection Relationship of Beam B9	99
4.25	Load-Steel Tension Strain Relationship of Beam B9	99
4.26	Load-Deflection Relationship of Beam B10	101
4.27	Load-Steel Tension Strain Relationship of Beam B10	102
4.28	Load-Concrete Compression Strain Relationship of Beam B10	102
4.29	Load-Deflection Relationship of B1 and B10	104
4.30	Ductility index for B1 and B10	104
4.31	Stiffness for B1 and B10	105
4.32	Toughness for B1 and B10	105
4.33	Load-Deflection Relationship of B2, B4 and B5	106
4.34	Ductility Index for B2, B4 and B5	106
4.35	Stiffness for B2,B4 and B5	107
4.36	Toughness for B2, B4 and B5	107
4.37	Load-Deflection Relationship of B3, B6 and B7	108
4.38	Ductility Index for B3, B6 and B7	108
4.39	Stiffness for B3, B6 and B7	109
4.40	Toughness for B3, B6 and B7	109
4.41	Load-Deflection Relationship of B1, B2 and B3	110
4.42	Ductility Index for B1, B2 and B3	110
4.43	Stiffness for B1, B2 and B3	111
4.44	Toughness for B1, B2 and B3	111
4.45	Load-Deflection Relationship of B4 and B6	112
4.46	Ductility Index for B4 and B6	112
4.47	Stiffness for B4 and B6	113
4.48	Toughness for B4 and B6	113