Identification of Sensorimotor Cortex by means of Functional Magnetic Resonane Imagin

Thesis
Submitted for partial fulfillment of
M .D. degree in
Radiodiagnosis

Presented by
Dr. *Hadeel Mohammed Seif El Dien Mohammed*Master Degree of Radiodaignosis

Under supervision of

Prof.Dr. Mervat Shafique El Sahragty

Professor of Radiodiagnosis Faculty of Medicine, Cairo University

Prof.Dr. Essam Ali El Shaikh

Professor of Radiodiagnosis Faculty of Medicine, Cairo University

Prof.Dr. Helmy Abdel Haliem El Desouki

Professor of Neurosurgery Faculty of Medicine, Cairo University

Cairo University 2008

بسم الله الرحمن الرحيم و ما توفيقي الا بالله عليه توكلت و اليه أنيب. صدق الله العظيم

To my family

Acknowledgments

First I would like to express my sincere appreciation and eternal indebtedness to my dear mother and friend professor Dr. Mervat Shafique, professor of Radiology, former chief of Radiology Department, faculty of medicine, Cairo University, for her constructive criticism and perceptive comments. Her thoughts and suggestion aided me immeasurably to complete this piece of work. Without her guidance and instructions this work would hardly be accomplished.

Words can never express my deep gratitude to professor Dr. Essam El Shaikh, professor of Radiology, Faculty of Medicine, Cairo University, for his continuous encouragement, unlimited help, valuable guidance and careful supervision. His well known support goes beyond any evaluation.

I'm so grateful to professor Helmy Abdel Haliem El Dosouki , professor of Neurosurgery , Faculty of Medicine , Cairo University , for his sincere guidance , enthusiastic cooperation and kind recommendations .

Finally, I would never be able to thank my family enough, especially my parents, their encouragement motivated me much to proceed successfully in my study. Their inspiration shines through on each page of this study.

I deeply appreciate the sincere help of my dear husband Dr. Abdel Rahman Mohammed, assistant professor of surgical oncology, National Cancer Institute, for his helpful advice and recommendations, great help and support to finish this work.

Special thanks to all my friends and colleagues for their help and encouragement that increased my enthusiasm.

Also I'd like to thank all the operators and nurses of MRI unit, Radiology department, Cairo University. They were greatly helpful in accomplishing this work.

Abstract

Purpose: blood oxygenation level dependant (BOLD) fMRI is a well known non invasive functional imaging modality. In the present study, a trial has been made to evaluate the ability of BOLD fMRI of detecting sensorimotor centers in normal control subjects as well as in neurosurgical patients having tumors in the vicinity of the central sulcus. The use of BOLD fMRI in presurgical planning has been also tested aiming to spare the patients invasive preoperative investigations as well as helping the surgeons to save as much as possible of the eloquent cortices present nearby the tumors.

Subjects and patients: in the present study 40 normal control subjects as well as 20 neurosurgical patients having tumors in the vicinity of the central sulcus have been examined by BOLD fMRI.

Results: - of the 40 normal control subjects 33 subjects demonstrated activation of the motor hand area at the precentral gyrus with concomitant activation of sensory areas in 21 of them activation of the premotor areas has been noted in 16 subjects, activation of the supplementary motor areas has been noted in 15 subjects.

- Of the 20 neurosurgical patients, 18 revealed activation of the primary motor hand area (mostly at the crown of precentral gyrus), concomitant activation of the sensory area has been noted in 6 patients. In 12 patients the primary motor area was displaced by the mass effect of the tumor. Two patients showed activation of the premotor areas and two patients showed activation of the supplementary motor areas. The displacement of the primary motor areas and decreased signal of activation is mostly evident in patients having glioma.

Conclusion: the BOLD fMRI has proved sensitive ability in detecting the eloquent cortices (sensorimotor centers) in normal control subjects as well as in neurosurgical patients having tumors at the vicinity of the central sulcus. Several subjects and two patients didn't show valuable activation of the sensorimotor cortices, the most important causes of failure to obtain sufficient activation is the motion artifacts in subjects and severe paresis in patients. Activation of premotor areas and supplementary motor areas has been shown as well in those having their motor centers activated and in those who didn't show valuable activation. This is explained by their motor imagery as well as motor inhibitory roles. Increase amount of activation in these areas have been also noted in neurosurgical patients and was attributed to reorganization of the cortical motor system

Key Words:

BOLD fMRI, motor hand area, motor cortex.

List of abbreviations

fMRI: functional magnetic resonance imaging.

BOLD: Blood oxygenation level dependant.

PCG: precentral gyrus.

SMC: supplementary motor area.

MsI: primary motor area.

MsII: secondary motor area

SmI: primary sensory area.

SmII: secondary sensory area.

SMA: supplementary motor area.

PM: premotor area.

cPM: caudal premotor area.

dPM: dorsal premotor area.

ASL: arterial spin labeling.

CBF: cerebral blood flow.

CBV: cerebral blood volume.

CMRGLc: cerebral metabolic rate of glucose.

CMRO2 : cerebral metabolic rate of oxygen .

RF: radiofrequency pulse.

FA: flip angle.

FOV: field of view.

S/N: signal to noise ratio.

GRE: gradient recalled echo.

SE:spin echo

EPI: ecchoplanar imaging.

SSEPI: single shot echoplanar imaging.

IVIM: intravoxel incoherent motion

MEG: magentoencephalography.

TMS: transcranial magnetic stimulation.

PET: positron emission tomography.

EEG: electroencephalography.

DECS: direct electrical cortical stimulation.

List of tables

Table 1: Shows the percentage of different motor areas activation in group
(C)111
Table 2: percentages of different areas of activation in normal contro
subjects114
Table 3: the frequency of displaced motor areas in patients showing evident
activation

List of figures

Figure (1): Schematic drawing of the anatomy of lateral brain surface
correlated with a cadaveric specimen
Figure (2): Schematic drawing of the anatomy of the medial surface of the
brain correlated with cadaveric specimen6
Figure (3): Inferior surface of the brain cadaveric specimen8
Figure (4): Dorsal surface of the brain (cadaveric specimen) and the
position of the precentral gyrus (2), central sulcus (1) and postcentral
gyrus(3), postcentral sulcus (4) in different MRI axial section9
Figure (5): Schematic drawing showing the topographic representation of
different body parts in the motor cortex14
Figure (6): Schematic drawing showing Broadmann's functional areas on
the medial and lateral surfaces of the brain15
Figure (7): Schematic drawing of the Broadmann's areas on the medial and
lateral surfaces of the brain (cadaveric specimen)16
Figure (8): Motor areas (primary, premotor and supplementary areas)
viewed on the medial and lateral hemispheric surfaces19
Figure (9): Computer Graphic Reconstruction (from MRI scans). Electrical
stimulation sites that cause movements of contralateral body parts are
mapped onto the precentral gyrus20
Figure (10): Physiological bases of the BOLD based FMRI36
Figure (11): Effects of motion correction algorithm SPW9651
Figure (12): Dynamics of BOLD signal response54
Figure (13): Selected brain regions showing the activation areas observed
by fMRI during finger movement

Figure (14): The sites of activation shown in 2 subjects during palm tactile,
finger tactile and kinesthetic/motor stimulation (t test)60
Figure (15): Activation is detected in the SMC, thalamus, putamen, and
cerebellum during finger motor activation70
Figure (16): : fMRI examination done to a patient having anaplastic
astrocytoma
Figure (17): Activation of SMC in patient having right frontal tumor89
Figure (18): A diffusion trace images of the PCG showing all white matter
tracts emanating from the motor cortex92
Figure (19): Spatiotemporal imaging of brain activity done by combining
the electromagnetic measurements with anatomical MRI and fMRI
information97
Figure (20): Axial SPGR images showing truncation of the left PCG and
activation to sequential finger tapping100
Figure (21): a Chart showing percentages of sides of stimulation in normal
control subjects
Figure (22): A diagram shows normal control subjects of groups A and B
115
Figure (23) A diagram shows normal control subjects of group C
Figure (24): a Chart showing frequencies of different locations of the motor
hand area in the normal control subjects
Figure (25) : A diagram shows neurosurgical patients of group D120
Figure (26): a Chart shows the frequency of different areas stimulated at
the unaffected hemisphere in-patients
Figure (27) a Chart shows the frequency of locations of motor hand area at
the PCG in the unaffected hemisphere of patients121

Figure (28): a picture of functional MRI study of case no.(1). Associated
with time –signal course curve124
Figure (29): A picture of functional MRI study of case no.(2), associated
with time-signal course curve
Figure (30): A picture of functional MRI study of case no.(3), associated
with time-signal course curve
Figure (31): A picture of functional MRI study of case no.(4), associated
with time –signal course curve
Figure (32): A picture of functional MRI study of case no. (5) . Associated
with time –signal course curve
Figure (33): A picture of functional MRI study of case no.(6) . Associated
with time –signal course curve
Figure (34): A picture of functional MRI study of case no.(7). Associated
with time –signal course curve
Figure (35): A picture of functional MRI study of case no. (8) . Associated
with time –signal course curve
Figure (36): A picture of functional MRI study of case no.(9). Associated
with time –signal course curve140
Figure (37):A picture of functional MRI study of case no. (10) . Associated
with time –signal course curve142
Figure (38): A picture of functional MRI study of case no.(11). Associated
with time –signal course curve144
Figure (39): A picture of functional MRI study of case no.(12). Associated
with time –signal course curve146
Figure (40): (a) A picture MRI study with contrast of case no. (`13).

Figure (40): (b) A picture of functional MRI study of case no.(`13).
Associated with time –signal course curve149
Figure (41): (a) A picture of MRI study with contrast of case no. (14).
Figure (41): (b) A picture of functional MRI study of case no.(14).
Associated with time –signal course curve
<u> </u>

List of contents

1- Introduction and aim of work	
2- Review of literature :	
Structural and functional anatomy of the cerebrum	2
Bases of the blood oxygenation level dependant (BOLD) effect	25
Imaging of functional brain activity	40
Functional MRI of the human sensorimotor cortex	58
Functional MRI for presurgical mapping	76
Functional MRI versus other methods	95
3- Subjects and methods	103
4- Results	111
5- Case presentation	124
6- Discussion	154
7- Summary & Conclusion	174
8- References	176
