Physicochemical and kinetic properties of purified arginase from Camel and Bovine liver cytosol

A thesis Submitted by

Rasha Elsherif Hassan Ibrahim

M.Sc. in Biochemistry (2005)
Biochemistry Department
Faculty of Science-Ain Shams University

As a requirement for degree of Doctor of philosophy in Biochemistry

Under supervision of

Dr. Mohamed M. Abdel Fattah

Dr. Tahany M. Maharem

Professor of Biochemistry Biochemistry Dept. Faculty of Science Ain Shams University (God rest his soul) Professor of Biochemistry Biochemistry Dept. Faculty of Science Ain Shams University

Dr. Walid E. Zahran

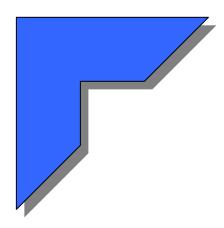
Assistant professor of Biochemistry Biochemistry Dept. Faculty of Science Ain Shams University

> Biochemistry Department Faculty of Science Ain Shams University 2009

Physicochemical and kinetic properties of purified arginase from Camel and Bovine liver cytosol

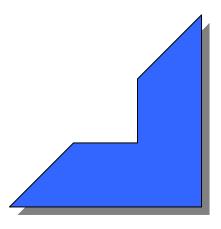
Board of Scientific Supervision

Dr. Mohamed M. Abdel Fattah


Professor of Biochemistry
Biochemistry Dept.
Faculty of Science
Ain Shams University
Cairo – Egypt
(God rest his soul)

Dr. Tahany M. Maharem

Professor of Biochemistry
Biochemistry Dept.
Faculty of Science
Ain Shams University
Cairo - Egypt


Dr. Walid E. Zahran

Assistant professor of Biochemistry
Biochemistry Dept.
Faculty of Science
Ain Shams University
Cairo - Egypt

This Thesis has not been submitted to this or any other University.

Rasha Elsherif Hassan

Dedication

Special thanks and gratitude to my beloved parents, brother and my beloved husband who are behind every successful aspect of my life. If every one is as kind as them, earth would be an utopia. Special thanks, love and care to my lovely son Abdullah. Finally, I want to dedicate this thesis to every member in my family especially to my grandfather and my grandmother (God rest their soul).

CONTENTS

	Page
Abstract	i
List of Figures	iii
List of Tables	xi
List of Abbreviations	xiii
Aim of the Work	xvi
Introduction	1
Materials and Methods	36
Materials	36
1- Enzyme source	36
2- Chemicals	36
3- Buffers	37
Methods	37
- Analyses	37
1- Arginase assay	37
2- Protein determination	40
- Purification of arginase	42
1- Preparation of crude homogenate	42
2- Heat treatment	42
3- Ammonium sulphate fractionation	43
4- DEAE cellulose column chromatography	44

5- SP-Sepharose column chromatography	46
6- Gel filtration chromatography	47
- Sephadex G-100-120 column	47
- Sephacryl HR-300 column	48
- Molecular weight determination	49
1- Gel filtration chromatography	49
2- Native polyacrylamide gel electrophoresis	52
3- SDS-Polyacrylamide gel electrophoresis	56
- Determination of isoelectric point	62
- Determination of carbohydrate content	65
- Determination of manganese content	66
Results	68
Discussion	142
Summary	158
References	165
Arabic Summary	
Arabic Abstact	

ABSTRACT

Rasha Elsherif Hassan Ibrahim, Physicochemical and kinetic properties of purified arginase from camel and bovine liver cytosol.

Ph.D. Thesis, Biochemistry Department, Faculty of Science, Ain Shams University.

In the present study, camel liver was chosen as a source of arginase, since no information is available about this enzyme from this species, so this is the first time to purify arginase from camel liver cytosol. Arginase was also purified from bovine liver cytosol and some of the physicochemical and kinetic properties of the purified arginase from the two sources were studied and compared.

Arginase was isolated and purified from camel and bovine liver using heat denaturation followed by ammonium sulphate fractionation, DEAE-cellulose column chromatography, SP-Sepharose column chromatography and gel filtration using Sephadex G-100-120 and Sephacryl HR-300 columns.

It was observed from the present investigation that there is a similarity between the purified camel and bovine liver arginases in some properties including the non-adsorption on anion exchanger column, the oligomeric structure of the enzyme, the non-cooperativity of subunits, the efficiency constant, the suspectability to the inhibition by some amino acids, the requirement for metal ions as cofactor, the alkaline optimum pH, the stability at 4°C, the cold lability through freezing and thawing cycle and storage at -20°C. On the other hand, purified camel liver arginase differs from the purified bovine liver enzyme in its chromatographic behaviour on the cation exchanger column, higher molecular weight (174-180 kDa) versus (133-140 kDa), slightly alkaline p*I* value (7.7) versus the slightly acidic to neutral pI values (5.9, 7), higher carbohydrate content 2.7% versus 0.6%, affinity towards arginine with K_m value 7.1mM versus 14.3mM of bovine liver enzyme, its inhibition by some metal ions as Sr⁺³ and Zn⁺². Also, it was found that camel liver arginase is more thermostable with an optimum temperature of 70°C and E_a of about 11,752cal/mole versus an optimum temperature of 55-60°C and E_a of about 10,420cal/mole for bovine liver arginase which demonstrates that camel liver enzyme has a relative structure rigidity. Finally, although purified camel liver arginase was affected by freezing at -20°C and by repeated freezing and thawing it proved to be more stable than the purified bovine liver enzyme.

Key words: Camel, bovine, liver, arginase, purification, physicochemical and kinetic properties.

LIST OF FIGURES

Figure no.	Legand	Page
Fig. (1)	Urea cycle	2
Fig. (2)	 a) Ribbon plot of rat liver arginase structure. b) Binuclear Mn⁺² center of rat liver arginase and its coordination interactions. 	7
Fig. (3)	Proposed arginase mechanism.	10
Fig. (4)	Diagram of the major metabolic fates of arginine.	11
Fig. (5)	Polyamine synthesis from arginine in mammalian cells.	13
Fig. (6)	Postulated pathways of L-arginine metabolism and their relationship to airway responsiveness, inflammation and remodeling.	22
Fig. (7)	Standard curve of urea covering the range (55-500µM).	39
Fig. (8)	Standard curve of BSA covering the range (20-200 µg/ml).	41
Fig. (9)	A plot of log molecular weight of standard proteins versus V _e /V _o using Sephadex G-100-120 gel filtration chromatography.	50
Fig. (10)	A plot of log molecular weight of standard proteins versus V _e /V _o using Sephacryl HR-300	51

	gel filtration chromatography	
Fig. (11)	A plot relating relative mobility $(R_{\rm f})$ and molecular weight of standard proteins using 10% native polyacrylamide gel electrophoresis.	60
Fig. (12)	A plot relating relative mobility (R_f) and molecular weight of standard proteins using 15% SDS-polyacrylamide gel electrophoresis.	61
Fig. (13)	A plot relating isoelectric point (p <i>I</i>) and relative mobility of standard proteins using native isoelectric focusing.	66
Fig. (14)	Standard curve of glucose covering the range (2-20µg/0.5ml).	67
Fig. (15)	DEAE-cellulose column chromatography of camel liver ammonium sulphate precipitation protein solution.	74
Fig. (16)	DEAE-cellulose column chromatography of bovine liver ammonium sulphate precipitation protein solution.	75
Fig. (17)	SP-Sepharose column chromatography of camel concentrated dialyzed DEAE-cellulose enzyme solution.	79
Fig. (18)	SP-Sepharose column chromatography of bovine concentrated dialyzed DEAE-cellulose enzyme solution.	80

Fig. (19)	Gel filtration of camel dialyzed pooled SP-	
	Sepharose enzyme solution on Sephadex G-100-	81
	120 column at a flow rate 20ml/hour and 2ml/fraction.	
	Gel filtration of bovine dialyzed pooled SP-	
	Sepharose enzyme solution on Sephacryl HR-	
Fig. (20)		82
	300 column at a flow rate 20ml/hour and 2ml/fraction.	
Fig. (21)	SDS-polyacrylamide gel electrophoresis pattern	84
8 ()	of camel liver arginase samples from different	
	purification steps.	
	SDS-polyacrylamide gel electrophoresis pattern	
Fig. (22)	of bovine liver arginase samples from different	85
	purification steps.	
	Native polyacrylamide gel electrophoresis of	
Fig. (23)	purified camel and bovine liver arginases	91
8. (- /	referring to individual standard molecular weight	
	markers.	
	Native molecular weight determination of	
Fig. (24)	purified camel and bovine liver arginases using	92
	10% native polyacrylamide gel electrophoriesis.	
Fig. (25)	Molecular weight determination of purified	
	camel liver arginase from calibration curve of	93
	protein markers with known molecular weight	
	using Sephadex G-100-120 gel filteration.	

	Molecular weight determination of purified	
Fig. (26)	bovine liver arginase from calibration curve of	94
Fig. (26)	protein markers with known molecular weight	7 4
	using Sephacryl HR-300 gel filteration.	
	SDS-polyacrylamide gel electrophoresis of	
Fig. (27)	purified camel and bovine liver arginases	95
	referring to standard molecular weight proteins.	
	Molecular weight determination of purified	
Fig. (28)	camel and bovine liver arginases using 15%	96
Fig. (28)	SDS-polyacrylamide gel electrophoresis.	90
	Native isoelectric focusing of purified camel and	
Fig. (29)	bovine liver arginases with respect to standard pI	97
Fig. (29)	markers.	91
	Isoelectric point (p <i>I</i>) determination of purified	
Fig. (30)	camel and bovine liver arginases using 5%	98
Fig. (30)	native polyacrylamide gel electrophoresis.	70
	Effect of enzyme concentration on the velocity	
Fig. (31)	of purified liver arginase catalyzed reaction. (a)	101
118. (61)	Camel liver arginase (9-64µg protein/assay).	101
	(b) Bovine liver arginase (6.5-46μg	
	protein/assay).	
	(a) Michaelis Menten plot of purified camel liver	
Fig. (32)	arginase as a function of arginine concentration.	102
11g. (32)	(b) Lineweaver-Burk plot relating purified camel	104
	liver arginase activity to arginine concentration.	

	(a) Michaelis Menten plot of purified bovine	
Fig. (33)	liver arginase as a function of arginine concentration. (b) Lineweaver-Burk plot relating	103
Fig. (33)	purified bovine liver arginase activity to arginine	103
	concentration.	
	Hill plot relating Log (v/V _{max} -v) and Log [S] of	
	purified liver arginase catalyzed reaction. (a) the	
Fig. (34)	substrate concentration was varied (10-50mM)	108
	for camel liver arginase reaction. (b) the	
	substrate concentration was varied (20-60mM)	
	for bovine liver arginase reaction.	
	Effect of pH on the activity of purified (a) camel	
	liver arginase, (b) bovine liver arginase, using	
Fig. (35)	50mM sodium acetate buffer pH (3.6-5.6),	110
	50mM potassium phosphate buffer pH (6-8),	
	50mM Tris-HCl buffer (7.2-9) and 50mM	
	carbonate-bicarbonate buffer pH (9.3-10.7).	
Fig. (36)	Effect of temperature on the purified (a) camel	111
g : (0 0)	liver arginase. (b) bovine liver arginase.	
	Arrhenius plot relating Log v _o and 1/T to	
	determine the E _a for purified liver arginase	
Fig. (37)	catalyzed reaction. (a) the incubation	112
119. (37)	temperature was varied (288-333K) for camel	112
	liver arginase reaction. (b) the incubation	
	temperature was varied (283-343K) for bovine	
	liver arginase reaction.	

	Thermostability of purified camel liver arginase.	
Fig. (38)	(a) The enzyme sample was preincubated alone	117
-	at (25°C, 37°C and 55°C). (b) The enzyme	11,
	sample was preincubated with Mn ⁺² at the same	
	temperatures.	
	Thermostability of purified bovine liver	
	arginase. (a) The enzyme sample was	
Fig. (39)	preincubated alone at (25°C, 37°C and 55°C) (b)	118
	The enzyme sample was preincubated with Mn ⁺²	
	at the same temperatures.	
	Lineweaver-Burk plot relating purified liver	
	arginase reaction velocity to arginine	
Fig.(40)	concentration in absence and presence of	129
	different L-ornithine concentrations with	
	constant concentration of (a) camel liver	
	arginase (0.036 mg protein/assay). (b) bovine	
	liver arginase (0.02 mg protein/assay).	
	Lineweaver-Burk plot relating liver arginase	
	reaction velocity to arginine concentration in	
Fig. (41)	absence and presence of different L-lysine	130
	concentrations with constant concentration of (a)	
	camel liver arginase (0.036 mg protein/assay).	
	(b) bovine liver arginase (0.02 mg	
	protein/assay).	
	Lineweaver-Burk plot relating purified liver	
Fig.(42)	arginase reaction velocity to arginine	131

	concentration in absence and presence of	
	different L-valine concentrations with constant	
	concentration of (a) camel liver arginase (0.036	
	mg protein/assay). (b) bovine liver arginase	
	(0.02 mg protein/assay).	
	Lineweaver-Burk plot relating purified liver	
	arginase reaction velocity to arginine	
	concentration in absence and presence of	
Fig. (43)	different L-leucine concentrations with constant	132
	concentration of (a) camel liver arginase (0.036	
	mg protein/assay). (b) bovine liver arginase	
	(0.02 mg protein/assay).	
	Lineweaver-Burk plot relating purified liver	
	arginase reaction velocity to arginine	
Fig. (44)	concentration in absence and presence of	133
	different DL-isoleucine concentrations with	
	constant concentration of (a) camel liver	
	arginase (0.036 mg protein/assay). (b) bovine	
	liver arginase (0.02 mg protein/assay).	
	Effect of L-ornithine on purified liver arginase	
	activity. (a) L-ornithine concentration was	
Fig. (45)	varied (5-50mM) for camel liver arginase	134
	reaction. (b) L-ornithine concentration was	
	varied (2-40mM) for bovine liver arginase	
	reaction.	