Outcome of Fludarabine and Cyclophosphamide as a First Line Treatment for Chronic Lymphocytic Leukemia Patients.

Thesis Submitted for Partial Fulfillment of Master Degree in Internal Medicine

Presented By Ibrahim Abdel Aziz Ibrahim Malash M.B.B.Ch.

Under Supervision of

Dr Omar Abd El-Rahman Fahmy Dr Mohammad Abd El-Mooti Samra

Professor of Internal Medicine Faculty of Medicine Cairo University Assistant Professor of medical Oncology National Cancer Institute Cairo University

Department of internal medicine Faculty of medicine Cairo University 2008

Acknowledgement

First and foremost thanks are to **GOD** the most beneficent kind and merciful.

I am most grateful to *Prof. Dr. Omar Fahmy* Professor Of internal medicine, Cairo University, who kindly supervised and motivated the performance of the work with keen interest and indispensable advices.

I would like to express my deepest gratitude to **Dr. Mohammed Abd El-Mooti** Assistant Professor of medical oncology National Cancer Institute, Cairo University for his valuable scientific supervision and guidance.

I am gratefully honored to express my sincere appreciation to all my professors and colleagues in the *medical oncology department* and to all my professors and colleagues in the National Cancer Institute.

Words will never be able to express my deepest gratitude to all those, who helped me during preparation of this work.

List of contents

Introduction	Page
Aim of the work	
Review of literature	
Definition and history	1
Etiology and pathogenesis	2
Clinical features	2 2 5
Laboratory findings	
Staging systems	8
Genetic events in B-CLL	10
Immune defects in B-CLL	13
Angiogenesis in B-CLL	13
Prognostic factors in CLL	14
Differential diagnosis of CLL	31
Treatment of CLL	46
- Indications for therapy	46
- Aim of therapy	47
- Response criteria	48
- Single agent chemotherapy	50
- Combination chemotherapy	61
- Immune therapy and biologic response	67
- Marrow or blood stem cell transplantation	72
Materials and methods	83
Results	91
Discussion	97
English summary	106
References	110
Arabic summary	140

List of tables

		Page
	mmunophenotype of B-cell chronic lymphocytic aia (B-CLL) and lymphomas that resemble it.	6
Table2: R	ai staging system	8
Table 3:	Binet staging system.	9
<u>Table 4:</u> Co	ommon genetic abnormalities and treatment free	22
su	urvival and median survival.	
<u>Table 5:</u>	Criteria for Defining Smoldering CLL.	23
Table 6:	Causes of Reactive Lymphocytosis.	32
<u>Table 7:</u>	Classification of B-cell Leukemias.	33
Table 8:	Indications for therapy in B-cell CLL.	47
Table 9:	NCI-SWG response criteria for CLL	50
Table 10:	Selected clinical trial results with fludarabine in	55
	previously untreated CLL patients.	
Table 11:	ECOG Performance status	80
Table 12:	NCI-Sponsored Working Group Guidelines for CLL	
	Grading scale for hematological toxicity	81
Table 13:	Correlation between different clinicopathologic factor	ors and
overall resr	oonse rate (ORR) and response failure rate (RFR):	94

List of figures

Fig. 1:	Sex distribution of the 31 patient included in	85
	this study.	
Fig.2:	Performance status of the 31 patients included in	86
	this study.	
Fig. 3:	distribution of lymphadenopathy in the 31	87
	patients included in this study.	
Fig. 4:	Hepatosplenomegaly encountered in the 31	87
	patients included in this study.	
Fig. 5:	Clinical staging of the 31 patients included in	90
	this study.	
Fig. 6:	Toxicity of chemotherapy in the 31 CLL	92
	patients included in this study.	
Fig. 7:	Response evaluation of the 31 patients included in	94
	this study	
Fig 8:	Overall survival of the 31 CLL patients included in	
	this study	96
Fig.9:	Time to Disease progression of the 31 CLL	
	patients included in this study	

List of Abbreviations

Ad-CD154 Adenovirus vector encoding recombinant CD154

ADCC Antibody-dependent cellular cytotoxicity

ALL Acute lymphoblastic leukemia

ATL Adult T-cell leukemia

β2m β2 microglobulin

bFGF basic fibroblastic growth factor

BM Bone marrow

CALGB Cancer and Leukemia Group B

CAP Cyclophosphamide, adriamycin, and prednisone

CD Cluster of differentiation

CDC Complement-mediated cytotoxicity

CHOP Cyclophosphamide, doxorubicin, vincristine, and

prednisone

CLB Chlorambucil

CLL Chronic Lymphocytic Leukemia

CMV CytomegalovirusCR Complete response

CTL Cytotoxic T lymphocytes

CVP Cyclophosphamide, vincristine, and prednison

Cy Cyclophosphamide

DiSC Differential staining cytotoxicity

DNA Deoxyribonucleic acid

EBV Eptien Barr Virus

F Female

FAFFAB French-American-British GroupFC Fludarabine/CyclophosphamideFISH Fluorescence in situ hybridization

FITC Fluorescine isothiocyanate

FL Follicular lymphoma

Flu Fludarabine

G6PD Glucose 6-phosphate dehydrogenase

GVHD graft-versus-host disease

h-lL-6 Human interleukin-6

HB Hemoglobin

HCL Hairy cell leukemia

HLA Human leucocytic antigen

ICAM-1 Intracellular adhesion molecule-1
IgH Immunoglobulin heavy chain

IgVH Immunoglobulin heavy chain variant

IL Interleukin

IWCLL International Workshop on Chronic Lymphocytic

Leukemia

κ Kappaλ Lambda

LDH Lactic acid dehydrogenaseLDT Lymphocyte doubling time

LGL Large granular lymphocytes leukemia

LI Lymphocyte infiltration

LPL Lymphoplasmacytic lymphoma

M Male

mAbs Monoclonal antibodies

MBCL Monocytoid B-cell lymphoma

MCL Mantle cell lymphoma

MHC Major histocompatibility complex

mRNA Massenger ribonucleic acid

NA Not applicable

NCIWG National Cancer Institute Working Group

NEUT Neutrophils

NGFr Nerve growth factor receptor
NHL Non-Hodgkin's lymphoma

NK Natural killer

No Number

NR Not reachedNR Not reported

ORR Overall response rate

OS Overall survival

PARP Poly-ADP-ribose polymerase

PB Peripheral blood

PBCL Polyclonal B-cell lymphocytosis

PCD Programmed cell death

PCNA Proliferating cell nuclear antigen

PCR Polymerase chain reaction

PD Progressive disease

PE Phycoerythrin

PFS Progression-free survivalPLL Prolymphocytic leukemia

PLT Platelets

PR-nod Nodular partial response

PR Partial responseRB retinoblastoma

Ref Reference Ritux Rituximab

RNA Ribonucleic acid

SCT Stem cell transplantation

SD Stable disease

sIg surface immunoglobulin

SLVL Splenic lymphoma with villous lymphocytes

SMZL Splenic marginal zone lymphoma

sVCAM-1 Soluble vascular cell adhesion molecule-1

TGF-beta Transforming growth factor beta

TK Tyrosine kinase

TNF α Tumor necrosis factor α

TRAP Tartrate resistant acid phosphatase

TSP-1 Thrombospondin-1

VAD Vincristine, doxorubicin, and dexamethasone

VEGF Vascular endothelial growth factor

WBC White blood cells

WHO World Health Organization

ZAP-70 Zeta-chain (T-cell receptor) associated protein kinase (70 kDa)

ABSTRACT

Introduction: Chronic lymphocytic leukemia (CLL) is a neoplastic disease characterized by the accumulation of small mature appearing lymphocytes in the blood, marrow, and lymphoid tissues. Fludarabine and cyclophosphamide is a highly active and well-tolerated regimen with an acceptable level of toxicity in patients with previously untreated CLL

<u>Aim of the work:</u> This study aimed at better definition and characterization of our newly diagnosed CLL patients regarding their clinical presentation, staging and evaluating the efficacy, response rate, factors affecting response, and toxicity of fludarabine and cyclophosphamide as a first-line treatment.

<u>Materials and methods:</u> Between January 2002 and December 2006, 31 adult patients presented to the medical oncology department, National Cancer Institute with previously untreated chronic lymphocytic leukemia treated with FC regimen were included in this study. Clinical and laboratory findings of these patients were assessed. Also response and toxicity to FC regimens and diseases-free and overall survivals were assessed.

Results: Complete clinical remission was achieved in 48.4% of patients, the overall response rate (ORR) was 64.5%, the mean overall survival was 35.4 months, and the median time to disease progression was 25 months.

Conclusion: This study indicates that the combination of fludarabine and cyclophosphamide is able to induce a high response rate with acceptable toxicity in newly diagnosed CLL patients

<u>Key words:</u> Chronic lymphocytic leukemia-Fludarabine-Cyclophosphamide.

INTRODUCTION and AIM OF THE WORK

Introduction

Chronic lymphocytic leukemia (CLL) is a neoplastic disease characterized by the accumulation of small mature appearing lymphocytes in the blood, marrow, and lymphoid tissues, treatment of CLL is moving from the era of watchful waiting and palliative treatment to an aggressive approach, with the new therapeutic end points of achieving a complete remission and minimal residual disease, using novel agents singly or in combination (Rai, 1999).

Patients with CLL can relapse even after aggressive therapy and autografts. It is commonly assumed that to prevent relapse the level of minimal residual disease (MRD) should be as low as possible. To evaluate MRD, highly sensitive quantitative assays are needed (Pekova et al., 2005).

Several phase III studies have firmly established fludarabine as the first -line treatment for symptomatic, untreated patients with CLL (Rai et al., 1996; Johnson, et al., 1996; Leporrier et al., 1997). It was found that fludarabine and cyclophosphamide is a highly active and well-tolerated regimen with an acceptable level of toxicity in patients with previously untreated CLL (Flinn et al., 1998).

Aim of the work

This study aimed at better definition and characterization of our newly diagnosed CLL patients regarding their clinical presentation, staging and evaluating the efficacy, response rate, factors affecting response, and toxicity of fludarabine and cyclophosphamide as a first-line treatment.

REVIEW OF LITERATURE

DEFINITION

Chronic lymphocytic leukemia (CLL) is a neoplastic disease characterized by the accumulation of small mature -appearing lymphocytes in the blood, marrow, and lymphoid tissues (Ries et al., 2003).

Ambiguity still persists as to the minimal diagnostic criteria for CLL. All recommendations require that the lower limit of the lymphocyte count in the peripheral blood of patients with CLL is greater than 4 X 10 ⁹/L (the upper limit of normal) and more than 25% lymphocytes in the bone marrow. Increases in lymphocytes in blood and bone marrow must be sustained to differentiate them from reactive lymphocytosis due to infections and other causes. In morphologic appearance, the lymphocytes should be predominantly mature to exclude other variants, such as PLL, HCL, and large granular lymphocyte (**Ries et al., 2003**)

CLL has an average incidence of 2.7 persons per 100.000 in the United States (**Diehl et al., 1999**), this incidence increased to 3.5 per 100.000 based on recent estimates. The risk of developing CLL increases progressively with age and is 2.8 times higher for older men than for older women (**Ries et al., 2003**).

In **Egypt**, according to the National Cancer Institute (NCI), Cairo University hospital based registry; CLL constituted **0.53** % out of 9082 cancer cases (48 CLL patients) and **7** % out of 687 leukemia cases registered during the year **2006** (Cancer registry at NCI, **2006**).

ETIOLOGY

ENVIRONMENTAL FACTORS:

Environmental factors do not appear to play a role in the pathogenesis of B-cell CLL (Redaellet al., 2004).

HEREDITARY FACTORS

Although most cases of CLL are sporadic, multiple cases of CLL may be found within a single family. There are numerous reports of families with multiple members having B-cell CLL. First-degree relatives of patients with CLL are more than three times at risk for having this disorder or other lymphoid neoplasms than is the general population (Houlston et al., 2003).

Clinical Features

PATIENT POPULATION

At diagnosis, most patients are over 60 years of age, and 90% are over age 50. The disease is extremely rare in persons under 25 years of age. There is a 2:1 male to female incidence and prevalence of CLL (Dighiero et al., 1991).