بسم الله الرحمن الرحيم

قال رب اشرح لى صدرى ﴿ ويسر لى امرى ﴿ والمن الله والمن عقدة من لسانى ﴿ يفقهوا قولى ﴿ والمنافى المنافى في المنا

صدق الله العظيم آيات ٢٨،٢٧،٢٦،٢٥ سورة طه

Effect of Mechanical Preparation and Sterilization on the Topographical Characteristics and Metallographic Structure of RaCe Ni-Ti Rotary Instruments (An In Vitro Study)

A Thesis Submitted to the Faculty of Oral and Dental Medicine, Cairo University in the Partial Fulfillment of the Requirements for the Master Degree

In Endodontics

By

Doaa Mohsen Mosaad Mohamed

B.D.S (2002)

Ain Shams University

Faculty of Oral and Dental Medicine Cairo University

2010

Supervisors

Dr. HebatAllah Mohamed Maged El Far

Associate Professor of Endodontics

Department of Endodontic

Faculty of Oral and Dental Medicine

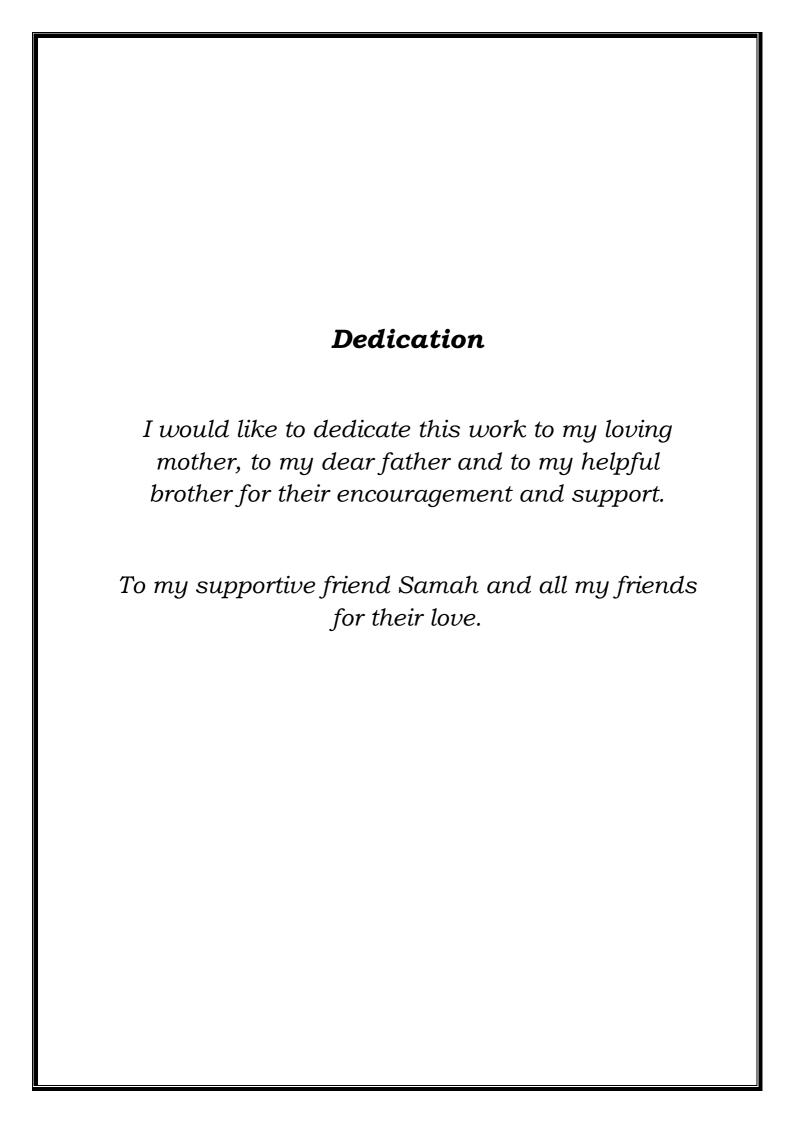
Cairo University

Prof. Dr. Nadia Amin Badr

Professor of Dental Materials

Department of Biomaterials

Faculty of Oral and Dental Medicine


Cairo University

Acknowledgment

First I thank **ALLAH** who gave me the strength to fulfill this work.

I would like to express my sincere gratitude to **Dr. Heba Allah EL Far** Associate Professor of Endodontics, Faculty of Oral and Dental Medicine, Cairo University, for her generous supervision, precious time she gave me throughout this study and her valuable advices.

I Wish also to express my deepest appreciation to **Prof. Dr. Nadia Amin Badr** Professor of Dental Materials, Faculty of Oral and Dental Medicine, Cairo University, for her endless support, kind guidance and continuous encouragement throughout this study.

List of Contents

1.	Introduction1
2.	Review of Literature3
	2.1 Nickel-Titanium Instruments
	2.2 Manufacture of Nitinol alloy3
	2.3 Metallurgy of nickel-titanium alloy5
	2.4 Fracture of Endodontic NiTi instrument6
	2.5 Electropolishing of nickel- titanium rotary endodontic
	instruments8
	2.6 Effect of electropolishing of nickel- titanium rotary endodontic instruments on their properties
	2.7 Shaping ability of RaCe rotary nickel- titanium instruments13
	2.8 Influence of use on rotary nickel- titanium endodontic
	instruments18
	2.9 Influence of sterilization on rotary nickel-titanium endodontic
	instruments31
<i>3</i> .	Aim of the study37
4.	Materials and Methods38
	4. I. Materials
	4. II. Methods
	4. II.1 Selection of Teeth
	4. II.2 Grouping of Samples40
	4. II.3 Preparation of Teeth

	4. II.4 Canal Instrumentation
	4. II.5 Application of sterilization cycles44
	4. III. Topographical Assessment and Evaluation44
	4. III.1 Examination of Topographical characteristics44
	4. III.2 Surface Roughness Measurement (Ra)44
	4. III.3 Determination of Vicker's Hardness number (VHN)45
	4. III.4 Statistical Analysis
	4. III.5 Determination of Crystallographic structure48
5.	<i>Results</i> 50
- •	5.1 Assessment of Surface Topography characteristics
	of the investigated files50
	5.2 Evaluation of Surface Roughness (Ra)62
	5.3 Determination of Surface Microhardness65
	5.4 The Crystallographic structure of RaCe nickel- titanium
	files
6.	<i>Discussion</i> 71
7.	Summary and Conclusions79
8.	Recommendations82
9.	<i>References</i> 83
10	Arabic Summary

List of Figures

Figure (1)	Reamer with Alternating Cutting Edges (RaCe)	39
Figure (2)	FKG Curvature Gauge	39
Figure (3)	Environmental Scanning electron microscope	46
Figure (4)	Stereomicroscope with digital camera	46
Figure (5)	The file handle embedded in chemically cured acrylic resin block	47
Figure (6)	Microhardness tester	47
Figure (7)	X-ray diffractometer	49
Figure (8)	ESE micrographs (×50 and ×1000) showing surface topography of control group showing pitting (P)	52
Figure (9)	ESE micrographs (\times 50 and \times 1000) showing surface topography of subgroup (MI) showing pitting (P), debris (D), and cracks(C).	53
Figure(10)	ESE micrographs (\times 50 and \times 1000) showing surface topography of subgroup ($M2$) showing pitting (P) and debris (D).	54
Figure(11)	ESE micrographs (\times 50 and \times 1000) showing surface topography of subgroup ($M3$) showing pitting(P)and debris (D),cracks (C) and attached metal strip(AM)	55
Figure(12)	ESE micrographs (\times 50 and \times 1000) showing surface topography of subgroup ($S1$) showing pitting (P) and straie (S)	56

Figure(13)	ESE micrographs (×50 and ×1000) showing surface topography of subgroup (S2) showing pitting (P) and straie (S)	57
Figure(14)	ESE micrographs (×50and ×1000) showing surface	
	topography of subgroup (S3) showing pitting (P) and straie (S)	58
Figure(15)	ESE micrographs (×50 and ×1000) showing surface	
	topography of subgroup $(M1S1)$ showing pitting (P) , debris	
	(D), attached (AM) and detached (DM) metal	5 0
	strip	59
Figure(16)	ESE micrographs (×50 and ×1000) showing surface	
	topography of subgroup (M2S2) showing pitting (P), debris	60
	(D), and cracks(C)	O O
Figure(17)	ESE micrographs (×50 and ×1000) showing surface	
	topography of subgroup (M3S3) showing pitting (P), debris	61
	(D), and attached metal strip (AM)	01
Figure(18)	Mean Surface Roughness values of the investigated	
riguic(10)	groups	64
Figure(19)	Mean Microhardness values of investigated groups	67
Figure(20)	XRD plot of control group file	7 0
Figure(21)	XRD plot of subgroup (M3S3) file	7 0

List of Tables

Table (1): The Experimental Factorial Design.	42
Table (2): The statistical analysis data of the surface	
roughness (Ra) of investigated files	63
Table (3): The statistical analysis data of the Microhardness	
of investigated groups	66
Table (4): The position, d-spacing, the relative intensities,	
and area of the peaks of the selected files	69