COLONIC DELIVERY SYSTEMS FOR METHYLPREDNISOLONE

A Thesis Submitted in Partial Fulfillment of the Requirements for the Master Degree of Pharmaceutical Sciences (Pharmaceutics)

By

Riham Ibrahim Osman El Gogary

Bachelor of Pharmaceutical Science, June 2004, Ain Shams
University
Teaching assistant, Department of Pharmaceutics, Faculty of
Pharmacy, Ain Shams University

Under the supervision of

Prof. Dr. Nahed Daoud Mortada

Professor of Pharmaceutics and Dean of the Faculty of Pharmacy, Ain Shams University

Dr.Gehanne Abd El-Samie Awad

Associate Professor of Pharmaceutics, Head of the Department of Pharmaceutics, Faculty of Pharmacy, Ain Shams University

Dr. Samar Mansour Holayel

Associate Professor of Pharmaceutics Faculty of Pharmacy, Ain Shams University

Ain Shams University
Faculty of Pharmacy
Department of Pharmaceutics
Cairo
2010

Abstract

"Colonic delivery systems for methylprednisolone"

Riham Ibrahim Osman El Gogary

Department of Pharmaceutics, Faculty of Pharmacy, Ain Shams University

The use of methylprednisolone (MP) in the treatment of inflammatory bowel disease, a local colonic disease, is restricted by the serious side effects resulting from the unnecessary systemic absorption of the drug when it is administered in a conventional oral dosage form. Targeting MP to the colon would help in avoiding unwanted drug absorption from the G.I.T. Hence, serious side effects will be minimized as well as more concentration of drug at the target site is expected to occur, providing more efficient disease treatment. Thus, the work in this thesis aimed at formulating, either single or multiple unit dosage forms, that target MP to the colon and proving the efficiency of the prepared dosage forms.

Methylprednisolone press coated tablets (MPPCTs) consisted of a directly compressed drug core tablets which were compression coated by the enteric polymer hydroxypropylmethylcellulose actetate succinate (HPMCAS). Colon targeting was achieved via two strategies; first, the use of triethylcitrate (TEC) as a plasticizer with the enteric polymer in different ratios, in addition to stearic acid. The second strategy was to apply heat to the compression coated tablets consisting of HPMCAS and hydrophobic additives namely; magnesium stearate, calcium stearate and stearic acid. A factorial design experiment was build up on the heat treated tablets prepared

using HPMCAS and stearic acid to determine the effect of different factors, in the heat treatment process namely; heating time, temperature and HPMCAS:stearic acid ratio, on the characteristics of the prepared tablets. The lag time (T_L) elapsed before drug release was taken as response. The press coated tablets were evaluated for their physical appearance, thickness, diameter and *in-vitro* release studies. Further investigations were done through differential scanning calorimetry and scanning electron microscopy.

The results revealed that the use of HPMCAS alone wasn't effective in preventing drug release even in pH 1.2. Upon addition of TEC, a lag time of 3 hours was obtained which was not affected by the amount of TEC used. Addition of stearic acid to this combination increased the lag time and decreased the % of MP released at 5 hours. The heat treatment of tablets composed of HPMCAS and magnesium stearate or calcium stearate didn't affect the drug release profiles. However, in case of stearic acid a significant increase in lag time was noticed accompanied by a significant decrease in the % of MP released at 5 hours. Factorial design analysis revealed that heating time, temperature and HPMCAS:stearic acid ratio had a significant effect on lag time. Tablets coated with HPMCAS:stearic acid in 4:1 ratio and heated at 90°C for 3 minutes with a lag time of 4.5 hours was used for the *in-vivo* study done through the X-ray imaging technique adopted on a healthy human volunteer, which proved that the tablets reached the colon intact and disintegrated in the proximal colon.

MP microspheres were prepared using the oil/oil solvent evaporation technique. For colon targeting, enteric polymers were combined with time dependent polymer either in a single microsphere coat or as a double coat.

The enteric polymers used were HPMCAS and Eudragit S and the time dependent polymer used was cellulose acetate butyrate (CAB). Evaluation of the prepared microspheres was done through the determination of drug loading capacity and encapsulation efficiency (EE%), photomicroscopic analysis, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), particle size analysis and *in-vitro* release studies. EE% increased upon increasing polymers concentration and the amount of drug used. All the prepared microspheres were discrete spherical and nonaggregated. Coating of MP-CAB microspheres with Eudragit S caused a significant change in surface morphology and significant increase in microspheres size. CAB:Eudragit S microspheres was found to have a very rough and wrinkled surface while that of CAB:HPMCAS microspheres were porous with smoother indentations and depressions. *In-vitro* release studies revealed that Eudragit S coated time dependent MP-CAB microspheres were more efficient in targeting MP to the colon than enteric/time dependent microspheres where the former released only 22.8% of MP before reaching the colon and exhibited controlled MP release at the target area due to CAB, hence, it would be useful in IBD cases with diffuse inflammation throughout the colon. The efficiency of this formula was further tested in-vivo by studying its effect on induced colonic inflammation in rabbits. Evaluation was done through macroscopic examination, determination of colon/ body weight and histopathological examination. All parameters proved these microspheres to be very effective in the treatment of colonic inflammation.

Acknowledgement

First and foremost thanks to **God** by the grace of whom this work was achieved.

I would like to express my sincerest appreciation to **Prof. Dr. Nahed Daoud Mortada**, Professor of Pharmaceutics and Dean of the Faculty of Pharmacy, Ain Shams University, for her valuable guidance, precious advice, great help, continuous encouragement and support throughout the development of this work.

I could never express my gratitude and sincere appreciation to **Dr.Gehanne Abd El-Samie Awad**, Associate Professor of Pharmaceutics and Head of the Department of Pharmaceutics for the continuous guidance, great support, precious advice and great effort she devoted for the completion of this thesis.

I would like to express my deepest thanks and sincere appreciation to **Dr. Samar Mansour Holayel,** Associate Professor of Pharmaceutics, Faculty of Pharmacy, Ain Shams University, for her great help, instructive supervision, valuable advice, continuous encouragement, support and generous attitude throughout the development of this thesis.

I would like to thank **Prof. Dr. Elham Anwar** for her help and kind support.

I would like to thank all the staff members in the **department of Pharmaceutics and Industrial Pharmacy**, Faculty of Pharmacy, Ain
Shams University, especially Dr. Amany Osama, Lecturer of Pharmaceutics,
Faculty of Pharmacy, Ain Shams University, Rania Hathout, Rania Aziz,
Hend Abdallah, assistant lecturers and Eman El Marakby for helping me

throughout the whole thesis. Special thanks to my very dear friend, Maha Nasr, assistant lecturer of Pharmaceutics, Faculty of Pharmacy, Ain Shams University, for her great help and continuous moral support throughout the development of the thesis.

No words can ever express my profound gratitude and sincere appreciation to my dear mother and father for their great effort, kind help and continuous moral support throughout the whole work.

List of Abbreviations

Capillary force promoter	CFP
Cellulose acetate butyrate	CAB
Colony forming unit/gram	CFU/g
Core	Cr
Differential Scanning Calorimetry	DSC
Encapsulation efficiency %	EE %
Figure	Fig
Gastrointestinal tract	G.I.T.
Glass transition temperature	Tg
Hydroxypropylmethylcellulose acetate succinate	HPMCAS
Hydrochloric acid	HC1
Inflammatory bowel disease	IBD
Lag time	${ m T_L}$
Methylprednisolone	MP
Methylprednisolone press-coated tablets	MPPCTs
Polymer:stearic acid ratio	P:S ratio
Pressure controlled delivery capsules	PCDCs
Scanning electron microscope	CEM
~ · · · · · · · · · · · · · · · · · · ·	SEM
Triethylcitrate	TEC
Triethylcitrate	TEC

List of Contents

Item	Page
List of Abbreviations	IV
List of Tables	V
List of Figures	IX
Abstract	XVI
General Introduction	1
Scope of Work	28
Chapter (1): Preparation and evaluation of colon targeted methylprednisolone compression coated tablets	
Introduction	29
Experimental	39
Materials	39
Equipment	39
Methodology	41
Determination of max of methylprednisolone in different pHs	41
Construction of calibration curves of MP in different pHs	41
Preparation of MP core tablets	42
Evaluation of the prepared MP core tablets	43
Preparation of MP coated tablets using HPMCAS polymer	45
Evaluation of the MP press coated tablets	47
Results and Discussion	54
max of MP in different pHs	54
The procedural constant (K) of MP in media of different pHs	54

Item	Page
Evaluation of MP core tablets	56
Evaluation of MPPCTs	59
Conclusion	98
Chapter (2): Preparation and Evaluation of Colon	
Targeted Methylprednisolone Microspheres	404
Introduction	101
Experimental	107
Materials	107
Equipment	107
Methodology	109
Preparation of methylprednisolone microspheres using oil/oil emulsion-	100
solvent evaporation technique	109
Determination of max and construction of calibration curve of	115
methylprednisolone in dichloromethane:methanol (1:1) mixture	115
Evaluation and characterization of the prepared microspheres	115
Results and Discussion	119
UV scanning and the procedural constant (K) of MP in dichloromethane:	110
methanol (1:1)	119
Evaluation of the prepared time-dependent MP-CAB microspheres	121
Evaluation of the prepared enteric/time dependent microspheres	129
Evaluation of enteric coated time dependent MP-CAB microspheres	139
Characterization of the prepared microspheres	146
Conclusion	157

Item	Page
Chapter (3): <i>In-vivo</i> evaluation of the selected single and multiple unit colon targeted systems.	
Introduction	160
Experimental	165
Materials	165
Equipment	165
Methodology	166
<i>In-vivo</i> evaluation of MPPCTs	166
<i>In-vivo</i> evaluation of MP microspheres	166
Results and Discussion	169
<i>In-vivo</i> evaluation of MPPCTs	169
<i>In-vivo</i> evaluation of MP microspheres	173
Conclusion	184
Summary	185
References	194
Arabic Summary	223

List of Tables

Table no.	Table Name	Page
1	Marketed drug products for the treatment of IBD using enteric Eudragit coatings	11
2	Guidelines for the management of ulcerative colitis, which is diagnosed by clinical evaluation, colonoscopy, barium enema, flexible sigmoidoscopy, laboratory tests and stool studies	27
3	Different grades of Shinu-Estu AQOAT	34
4	Composition of different MP core tablets	42
5	Composition of the coat of MPPCTs prepared using HPMCAS, TEC and stearic acid in different ratios	46
6	Composition of the coat of MPPCTs prepared using HPMCAS and different hydrophobic additives	46
7	Factors and levels of the factorial design used in the formulation of heat treated MPPCTs	49
8	Formulations of heat treated MPPCTs according to the factorial design experiment	50

PCTs prepared 51 orbance at max 55
orbance at max 55
58
61
ICAS:TEC 65
HPMCAS:TEC: 66
71
PPCTs prepared 75
PPCTs prepared 76

Table No.	Table Name	Page
18	Lag time of heat treated MPPCTs prepared according to the factorial design	79
19	ANOVA data for lag time of heat treated MPPCTs prepared according to factorial design	81
20	The main effect of different factors on mean lag time of heat treated MPPCTs prepared according to factorial design	81
21	The results of the two way interactions of the different factors on the mean lag time (T_L) of heat treated MPPCTs prepared according to the factorial design	82
22	Release kinetics of MP from selected heat treated MPPCTs prepared using P:S	88
23	Composition of time dependent MP-CAB microspheres	112
24	Composition of enteric/time dependent MP microspheres	113
25	Composition of enteric coated time dependent MP-CAB microspheres	114
26	Relation between MP concentration and absorbance at max 245 nm in dichloromethane: methanol (1:1 v:v)	120

Table No.	Table Name	Page
27	Theoretical and actual drug loading capacity and EE% of time dependent MP-CAB microspheres	124
28	Release data of time dependent MP-CAB microspheres	127
29	Theoretical and actual drug loading capacity and EE% of enteric/time dependent MP microspheres	132
30	Release data of enteric/time dependent MP microspheres	137
31	Theoretical and actual drug loading capacity and EE% of enteric coated time dependent MP-CAB microspheres	140
32	Release data of enteric coated time dependent MP-CAB microspheres compared to time dependent MP-CAB microspheres	144
33	Release kinetics of MP from Eudragit S coated time dependent MP-CAB microspheres	144
34	Mean particle diameter of selected MP microspheres	153
35	The colon/ body weight ratio in the different groups of rabbits	177