GENETIC FINGERPRINTING OF SELECTED EGYPTIAN SHEEP STRAINS COMPARED TO OSSIMI BREED

IBRAHIM MOHAMED KHAIR KAYALI

B.Sc. Agric. Sc. (Animal Production), Aleppo University, 2004

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE in

Agricultural Science (Genetics)

Department of Genetics
Faculty of Agriculture
Ain Shams University

Approval Sheet

GENETIC FINGERPRINTING OF SELECTED EGYPTIAN SHEEP STRAINS COMPARED TO OSSIMI BREED

BY IBRAHIM MOHAMED KHAIR KAYALI

B.Sc. Agric. Sc. (Animal Production), Aleppo University, 2004

This thesis for M.Sc. degree has been approved by:		
Prof. Dr. Mahmoud Husien Abou- Deif		
Prof. of Genetics, National Research Center		
Prof. Dr. Alia Ahmed El - Seoudy		
Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University		
Prof. Dr. Mohamed Abdel-Salam Rashed Prof. of Genetics, Faculty of Agriculture, Ain Shams University		

Date of Examination: 4/7 / 2009

GENETIC FINGERPRINTING OF SELECTED EGYPTIAN SHEEP STRAINS COMPARED TO OSSIMI BREED

BY IBRAHIM MOHAMED KHAIR KAYALI

B.Sc. Agric. Sc. (Animal Production), Aleppo University, 2004

Under the supervision of:

Prof. Dr. Mohamed Abdel-Salam Rashed

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Mohamed Reda Ismail Anous

Prof. of Animal Husbandry, Department of Animal Production, Faculty of Agriculture, Ain Shams University

AKNOWLEDGEMENT

I wish to thanks my home country, **Syria**, which gave me the opportunity to complete my post-graduate education, also thanks are forwarded to my second country **Egypt** which received me, offered all available facilities and abilities.

The author wishes to express his great and sincere thanks, deepest respects and appreciations to his principle supervisor **Prof. Dr Mohamed Abdel-salam Rashed** for his continuous encouragement, valuable advices and for the continuous support for thesis requirements.

Sincere respects and appreciations are offered to my supervisor **Prof. Dr.**Mohamed Reda Ismail Anous for his continuous revising, editing and the valuable directions in order to give the manuscript its better final form. Special thanks are also due to **Dr. Aiman Hanafy Atta** for his advices.

Thanks and appreciations are oriented to **Dr. Yasser Mohamed Sad** for his kind help and continuous encouragement

The author extends his sincere thanks to every one of the staff of the department of genetics and his laboratory colleagues, especially **Hamdi Ibrahim Al saffouri and Nouh Eyd Ahmed** for their help.

Firstly and finally the author offers his parents, brothers and sisters.

ABSTRACT

Ibrahim Mohamed Khair Kayali: Genetic Fingerprinting of Selected Egyptian Sheep Strains Compared to *Ossimi* Breed. Unpublished M. Sc. Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2009.

Two strains of El-Adely sheep and Ossimi breed were characterized using biochemical and molecular genetic techniques. Protein banding pattern using SDS and native gel electrophoresis were carried out to identify the biochemical genetic fingerprint of each El-Adely sheep strains (HOR and HMY) and Ossimi breed .Meanwhile, randomly amplified polymorphic DNA (RAPD) technique was also carried out to identify the molecular genetic fingerprint for the same individuals using seven random primers.

There were some specific bands (markers) on the biochemical and molecular level, which can differentiate among El-Adely sheep strains and Ossimi breed. The genetic homogeneity percentages within each of Ossimi breed, El-Adely HOR strain and El-Adely HMY strain were 53% ,37% and 55% respectively. Similarity value based on SDS-PAGE, Native-PAGE and RAPD-PCR analysis was the between the two strains of El- Adely sheep (HOR and HMY) strains .while the lowest between Ossimi breed and El-Adely it was sheepHOR strain. Also, similarity value was low between El-Adely sheep HMYstrain and Ossimi breed. The dendrogram was constructed among the studied sheep groups based on SDS- PAGE, Native -PAGE and RAPD analyses and showed that Ossimi breed was distantly related from both the two strains of El-Adely sheep (HOR and HMY) strains.

The present study revealed that SDS-PAGE, Native-PAGE and RAPD- PCR techniques could be strongly recommended as useful tools for detecting fingerprint, determination of polymorphism and establishing the genetic relationships among different sheep genotypes.

Key words: Sheep, *Ossimi* breed, *El-Adely* strains, SDS-PAGE, Native-PAGE, RAPD-PCR, fingerprint, homogeneity percentage and genetic similarity.

LIST OF TABLES

1.	Average and ranges of some reproductive and productive traits	
	of Ossimi breed and the HOR and HMY strains of El-Adely	
	sheep	27
2.	Composition of the resolving gel (15%) and the staking gel	21
	(3.9%)	31
3.	Composition of the resolving gel (12%) for native protein	
	electrophoresis	33
4.	List of the seven studied random primers with their nucleotide	
	sequences	36
5.	Score SDS-protein banding pattern of Ossimi breed	
	individuals	40
6.	Score SDS-protein banding pattern of El-Adely sheep HOR	
	strain individuals	42
7.	Score SDS-protein banding pattern of El-Adely sheep HMY	
	strain individuals	43
8.	Score of Score of SDS- protein banding pattern of the three	
0.	studied groups (Ossimi breed, HOR and HMY strains)	45
9.	Similarity matrix among the three tested sheep group based on	
	SDS-protein banding pattern	46
10.	Score of native- protein banding pattern of Ossimi breed	
	individuals	49
11.	Score of native- protein banding pattern of El -Adely sheep	
	HOR strain individuals	51
12.	Score of native- protein banding pattern of El -Adely sheep	
	HMY strain individuals	52
13.	Homogeneity percentage within studies groups based on	
	native-protein banding patterns	53

14.	Score of native- protein banding pattern of the three studied	
	groups (Ossimi breed, HOR and HMY strains)	54
15.	Similarity matrix among studied sheep groups based on	. .
	native-protein profiles	56
16.	Score of RAPD-PCR fragments produced using A19 primer	
	for Ossimi breed individuals	60
17.	Score of RAPD-PCR fragments produced using A19 primer	
	for El-Adely sheep HOR strain individuals	60
18.	Score of RAPD-PCR fragments produced using A19 primer	-0
	for El-Adely sheep HMY strain individuals	60
19.	Score of RAPD-PCR fragments produced using A15 primer	
	for Ossimi breed individuals	63
20.	Score of RAPD-PCR fragments produced using A15 primer	
	for El-Adely sheep HOR strain individuals	63
21.	Score of RAPD-PCR fragments produced using A15 primer	
	for El-Adely sheep HMY strain individuals	63
22.	Score of RAPD-PCR fragments produced using A7 primer	
	for Ossimi breed individuals	66
23.	Score of RAPD-PCR fragments produced using A7 primer for	
	El-Adely sheep HOR strain individuals	66
24.	Score of RAPD-PCR fragments produced using A7 primer	
	for El-Adely sheep HMY strain individuals	67
25.	Score of RAPD-PCR fragments produced using C18 primer	
	for Ossimi breed individuals	69
26.	Score of RAPD-PCR fragments produced using C18 primer	
	for El-Adely sheep HOR strain individuals	69
27.	Score of RAPD-PCR fragments produced using C18 primer	
	for El-Adely sheep HMY strain individuals	69
28.	Score of RAPD-PCR fragments produced using C9 primer	
	for Ossimi breed individuals	72
29.	Score of RAPD-PCR fragments produced using C9 primer for	
	El-Adely sheep HOR strain individuals	72

30.	Score of RAPD-PCR fragments produced using C9 primer	
	for El-Adely sheep HMY strain individuals	73
31.	Score of RAPD-PCR fragments produced using C6 primer	
	for Ossimi breed individuals	75
32	Score of RAPD-PCR fragments produced using C6 primer for	
	El-Adely sheep HOR strain individuals	75
33.	Score of RAPD-PCR fragments produced using C6 primer	
	for El-Adely sheep HMY strain individuals	75
34.	Score of RAPD-PCR fragments produced using C4 primer	
	for Ossimi breed individuals	78
35.	Score of RAPD-PCR fragments produced using C4 primer for	
	El-Adely sheep HOR strain individuals	78
36.	Score of RAPD-PCR fragments produced using C4 primer	
	for El-Adely sheep HMY strain individuals	78
37.	RAPD-specific markers for the three tested sheep groups	80
38.	Similarity matrix among of the three studied sheep groups	
<i>5</i> 0.	based on RAPD –PCR analysis	81

LIST OF FIGURES

1.	Side view of morphological characters for high ovulation El-Adely (A). High milk El-Adely (B) and Ossimi (C) ewes	28
2.	SDS-protein banding pattern of Ossimi breed individuals.	40
3.	SDS-protein banding pattern of El-Adely sheep HOR strain individuals	41
4.	SDS-protein banding pattern of El-Adely sheep HMY strain individuals	43
5.	SDS-Plasma protein banding pattern of the three studied groups (Ossimi breed, HORS and HMYS strains	44
6.	Dendrogram tree for the genetic distance among Ossimi breed and El-Adely sheep strains based on SDS-protein banding pattern	47
7.	Native- protein banding pattern of Ossimi breed individuals	49
8.	Native- protein banding pattern of El -Adely sheep HOR strain individuals	50
9.	Native- protein banding pattern of El -Adely sheep HMY strain individuals	52
10.	native-protein banding pattern of the three studied groups (Ossimi breed, HORS and HMYS strains)	54
11.	Dendrogram tree of the genetic distance among studies groups based on native-protein profiles	56
12.	RAPD-PCR-fragments using A19 primer for Ossimi breed (a), El-Adely HOR strain (b) and El-Adely HMY	
	strain(c) individuals	59

VIII

13.	RAPD-PCR-fragments using A15 primer for Ossimi breed (a), El-Adely HOR strain (b) and El-Adely HMY strain(c) individuals	62
14.	RAPD-PCR-fragments using A7 primer for Ossimi breed (a), El-Adely HOR strain (b) and El-Adely HMY strain(c) individuals	65
15.		68
16.	RAPD-PCR-fragments using C9 primer for Ossimi breed (a), El-Adely HOR strain (b) and El-Adely HMY strain(c) individuals	71
17.	RAPD-PCR-fragments using C6 primer for Ossimi breed (a), El-Adely HOR strain (b) and El-Adely HMY strain(c) individuals	74
18.	RAPD-PCR-fragments using C4 primer for Ossimi breed (a), El-Adely HOR strain (b) and El-Adely HMY strain(c) individuals	77
19.	Dendrogram for the genetic distance among the three tested sheep groups based on RAPD-PCR analysis	82

I. INTRODUCTION

Sheep spread in different parts of the world which represent an important resource of animal protein, and are considered as the main resources of income in several countries. There are many types of sheep breeds; wool type, dairy type and meat type. The major breeds of sheep in Egypt are Ossimi, Rhmani and Barki. In addition, there are some minor sheep breeds—such as Abidi, Abudelek, Farafra, Maenit, kanzy, Saidy, Sanabawi and Sohagy. In Egypt several—trials have been carried out to improve their production by selection or crossing with European breeds with the use of good management.

There are about 3.924 million heads of sheep in Egypt (**Mervild**, **2007**). Mutton is very favorable for Egyptian people but many people are unable to buy it due to the high price and limited supply in meat markets. Therefore, Egypt imports annually a huge amount of meat to face its high demand. Furthermore, ewes of the different local sheep breeds are scrawny, as sheep breeders neglect the milking of their ewes. Selection is always oriented towards meat characters. They neglect also the technology of transformation of sheep milk to cheeses that are largely imported every year to cover tourist demand. Egyptian sheep breeds are raised as dual purpose animals (meat and wool) but never as a milk type animal.

The problem of sheep production and the frail sheep products in Egypt is the weak productivity and the pathetic reproductive traits of the local sheep breeds which reflect a feeble profitability from its project that could be attributed to the dreadful genetic potential of our local breeds in terms of milk and meat on one hand and the neglect of milking ewes to obtain milk essential for the sheep cheese industry from the other hand.

El-Adely sheep was developed from selected ones of Ossimi and Rahmani breed, followed by selection for twenty years. Inbreeding was also used to fix some favorable genes in the animals of the basic flock. Two strains were produced from this breed, high ovulation rate strain (HORS) and high milk yield strain (HMYS) for higher meat and milk

production, respectively. These two strains of El-Adely sheep have many phenotypic traits like the Ossimi breed. It is hoped to expand the base of these strains to be raised in a vast scale, and to be used as an enhancer to cross with the other local Egyptian sheep breeds under intensive and semi-intensive systems of production aiming to increase mutton in the local meat market and milking ewes to make favorable sheep cheese that is actually imported from abroad. The two strains of El-Adely breed were developed by Adel Said in his farm. (Mourad, 2008).

Molecular genetic technologies have changed the pace and dimension of genetic analysis of livestock species. DNA based polymorphisms are being used for marker-assisted selection strategies, parentage testing, species identification, breed characterization and population genetic studies. The advent of RAPD analysis (Randomly amplified polymorphic DNA) by Williams *et al.* (1990) provided a tool for the molecular geneticist. Amount of polymorphism observed with RAPD technique is comparable to that of Restriction Fragment Length Polymorphism (RFLP) and microsatellite(SSR) techniques and possibility of converting the RAPD marker of interest into a single locus PCR marker namely SCAR (sequence characterised amplified region) have made a promising technique (Joshi *et al.*, 1998).

During the last few years, some molecular studies were carried out using RAPD-PCR technique to detect the diversity in the local and/or adapted sheep and goat breeds in Egypt. The results of these studies demonstrated the usefulness of the RAPD-PCR technique for detecting DNA polymorphism and establishing the relationships among different breeds; Rahmany, Ossimi and Barki sheep breeds (Ali, 2003). These studies confirmed the previous conclusions reported by (Appa Rao et al. 1996) who reported that the RAPD-PCR profile can be effectively used as a supporting marker for taxonomic identification. In taxonomic and molecular systematic, species-specific RAPD markers could be used as an invaluable tool for species variation and establishing the status of organisms and its evolution.

The objectives of present study are:

- 1- Conduction of biochemical and molecular genetic fingerprinting of Ossimi breed and the two strains of El-Adely sheep.
- 2- Calculation of genetic similarity values among the studied groups.
- 3- Calculation of genetic homogeneity percentage within each of the studied groups
- 4- Obtaining specific biochemical and molecular genetic marker for Ossimi breed and the two strains of El-Adely sheep.
- 5- Construction of dendrogram which showed the genetic relationships among Ossimi breed and the two strains of El-Adely sheep.

II.REVIEW OF LITERATURE

Live stock production represent about 30% of the agriculture revenue of the countries of West Asia and North Africa and their products are the main output for areas receiving less than 300mm annual rainfall. The 300 million small ruminants account for a large proportion in this output and represent a significant reserve for the small farmers who predominant in these countries.

1. Sheep breeds in Egypt

The major sheep breeds in Egypt are Ossimi, Rahmani and Barki, which constitute 65% of the total sheep population. Ossimi and Rahmani are the important sheep breeds, although they represent 35% of the total sheep population in Egypt. They are reared in the intensive agricultural zone in Nile Delta of Egypt. Barki is mainly reared in the Western Northern coastal zone of Egypt.

1. 1. Ossimi breed:

Galal (1987) reported that Ossimi is the original sheep breed of Egypt, which is traced to Ossim village in the Giza Governorate of Egypt. Numerically, it is the largest breed constituting one-third of the total sheep population in Egypt. It is a medium size breed. They produce meat (lambs) as die main product and course/carpet wool (usually white in color) as a by-product and it has white body color and red head.

1. 2. Breed characteristics of El-Adely sheep:

Mourad (2008) reported that El-Adely sheep was developed from selected local animals of Ossimi and Rahmani breeds followed by selection for many generations. Inbreeding was also used to fix some favorable genes in the animals of the basic flock. Two strains were produced from this breed. high ovulation rate strain (HORS) and high milk yield strain (HMYS) for higher meat and milk production, respectively, and these two strains had many phenotypic traits like the Ossimi breed.