INFLUENCE OF FORMALIN AND HYDROGEN PEROXIDE ON THE PROPERTIES AND CONSTITUENTS OF MILK AND CHEESE

BY

MERANDA ABD-EL-MEGALY TAWFEK

B.Sc. Agric. Co-oper.., Higher Institute of Agriculture Co-operation, Shoubra El-Kheima, 1996

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

in

Agricultural Science (Dairy Science and Technology)

Food Science Department Faculty of Agriculture Ain Shams University

INFLUENCE OF FORMALIN AND HYDROGEN PEROXIDE ON THE PROPERTIES AND CONSTITUENTS OF MILK AND CHEESE

BY

MERANDA ABD-EL-MEGALY TAWFEK

B.Sc. Agric. Co-oper.., Higher Institute of Agriculture Co-operation, Shoubra El-Kheima, 1996

Under the supervision of:

Prof. Dr. Atef El-Sayed Fayed

Professor of Dairy Science and Technology, Food Science Department, Faculty of Agric., Ain Shams University

Prof. Dr. Ahmed Ismail Metwally

Professor of Dairy Science and Technology, Food Science Department, Faculty of Agric, Ain Shams University

Dr. Hala Abd-El-Moneam Abd-El-Rahman

Researcher of Dairy Science, Food Technology Research Institute, Agricultural Research Center, Giza

APPROVAL SHEET

INFLUENCE OF FORMALIN AND HYDROGEN PEROXIDE ON THE PROPERTIES AND CONSTITUENTS OF MILK AND CHEESE

BY

MERANDA ABD-EL-MEGALY TAWFEK

B.Sc. Agric. Co-oper.., Higher Institute of Agriculture Co-operation, Shoubra El-Kheima, 1996

Prof.	Dr. Mohamed Bedeir El-Alfy
	Professor of Dairy Science & Technology and Dean of Fac. of
	Agric., Moshtohor, Zagazig University

- Prof. Dr. Abd-El-Moneam El-Badawy Hagrass

 Professor of Dairy Science and Technology, Food Science
 Department, Faculty of Agric., Ain Shams University

Date of examination: 8/2/2005

ACKNOWLEDGEMENT

First and foremost, I'm indicated to ALLAH forever, the most beneficent and merciful.

I would like to convey my profoundly gratitude to **Prof. Dr. A. E. FAYED**, Professor of Dairy Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University, for his supervision, unlimited guidance and valuable assistance during all stages of this Thesis.

I would like to express my thanks to **Prof. Dr. A. I. METWALLY**, Professor of Dairy Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University, for his close supervision, facilities offered during study.

Appreciation should be extended to departed **Dr. S.G. OSMAN**, the previous chief of researchers, Food Technology Research Institute, Agricultural research Center, and to **Dr. HALA A. ABD-EL-RAHMAN**, Researcher of Dairy Science, Food Technology Research Institute, Agricultural research Center for supervising of this investigation.

I'm also very much indebated to the Staff Members of Food Science Department, Faculty of Agriculture, Ain Shams University, and of Food Technology Research Institute, Agricultural research Center, for their faithful help during all stages of this study.

My deep grateful and appreciation to my father and mother for their continuous encouragement, patience and support.

ABSTRACT

Meranda Abd El-Megaly Tawfek, Influence of Formalin and Hydrogen Peroxide on The Properties and Constituents of Milk and Cheese. Unplublished Master of Science Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2005.

The aim of this work was planned to study the effect of formaldehyde (FA) and hydrogen peroxide (H₂O₂) on the milk constituents properties especially the protein and its reflection on the milk coagulation properties and hence the resultant cheese.

Raw buffalo's skimmilk samples each with 100 ml were spiked using FA (40%) or H_2O_2 (35%) at the level of nil (control), 0.025, 0.050, 0.100, 0.200, 0.300, 0.400, or 0.500%. Moreover, cast UF-white soft cheese was made using precheese spiked either with FA or H_2O_2 at the level of nil or 0.3% whether further heat treated at 72°C for 20 sec. after preservative adding or not. The resultant cheese was kept at 5°C for 4 weeks (W).

The obtained results indicated that, all coagulation properties of milk involving, clotting time, curd firmness and synersis were significantly harmed by both kinds (especially FA) and as their levels raised. An increased in the caseins (Cns) peak at the expense of other two peaks of whey proteins (β -lactoglobulin, β -Lg and α -lactalbumin, α -La) fractionated by Sephadex G100 was found to be associated with FA adding νs the opposite trend when, H_2O_2 was added. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-fraction of α_{s1} -Cn and β -Cn raised while γ -Cns decreased by FA on the contrast to H_2O_2 . Significant reductions in the level amino acids of lysine, methionine, cysteine, leucine, total essential amino acids (TEAA), histidine, arginine,

serine, aspartic acid, alanine, total non-essential (TNEAA) and total amino acids (TAA) were occurred due to adding 0.3% preservatives regardless their kinds. Likewise, the protein efficiency ratio (PER), biological value (BV) and net protein utilization (NPU) of milk proteins were harmed by any type of preservative level studied. Neither dry matter (DM), fat/DM, protein/DM nor ash content of cheese was significantly affected either by the kind or the level of the preservative added. However, the fat/DM as well as the ash contents raised and that of protein/DM decreased due to the further heat treatment of the precheese after preservative adding prior cheesemaking. The water soluble nitrogen/total nitrogen (WSN/TN%) and pH value of cheese lowered by FA than H₂O₂. While, the titratable acidity (TA%) of cheese increased in the presence of FA than H₂O₂. Considerable depressing in the absorbancy of most proteins fractions (especially β-Lg) gained by Sephadex G100 due to precheese treating either by H₂O₂ adding or further heating, opposite to that occurred when FA was added, which inhibited the heat-induced dissociation of casein (Cn) contributed to the further heating of precheese. While, H₂O₂ retarded but did not completely prevent the heat-induced association between k-Cn and β-Lg. Except of α_{s1} -Cn, the level of α_{s2} -Cn, β -Cn, k-Cn and γ -Cns of cheese protein fractionated by SDS-PAGE were increased by FA and decreased by H₂O₂ as compared with the control. However, the levels of lactoferrin (placed also with the cheese ripening proteinous product of α_{s1} -I-fragment), immunoglobulins (Igs), β-Lg and α-La of UF cheese protein raised by adding H₂O₂ to precheese as compared either with those containing FA or even the control. The precheese further heating led to peak diminishing of most whey proteins fractions (except of those of Igs and α -La), α_{s2} -Cn as well as β -Cn and increasing in both of k-Cn and γ -Cns. The prolonging of cheese cold storage period was associated with

decrement in all casein fractions except of γ -Cns, those increased similarly as exhibited by β -Lg and α -La fractions. Cheese firmness weakened due to preservatives adding, regardless their kinds, and strengthened by the further heating of precheese. The behaviour of cheese firmness during cold storage period tended to weaken after 2W and to restore after 4W. The addition of 0.3% preservatives regardless their kinds to the precheese or/and further heating of precheese led to obtained cheese with decreased total viable bacterial count, which gradually raised by prolonging the cold storage period. All cheeses, those made from preservative-containing precheese, were free from the coliform bacteria as well as yeasts and moulds.

The considerable changes in the properties whether those of milk or cheese are making it possible to design measurement procedures for preservative detection based essentially on those occurred in the milk protein fractions and properties.

Key words: Rennet clotting time, Curd firmness, Curd synersis, Sephadex G100, SDS-PAGE, Amino acids composition, Protein efficiency ratio (PER), Biological value (BV), Net protein utilization (NPU), Cold stored cast UF-white soft cheese, Cheese firmness, Ripening indices.

CONTENTS

		Page
I.	Introduction	1
II.	Review of Literature	4
	 Healthy and nutritional hazards of formalin and hydrogen peroxide The alterations in the chemical and coagulation 	4
	properties contributed to the formaldehyde as milk preservative	7
	3. The alterations in the chemical and coagulation properties contributed to the hydrogen peroxide as milk preservative	10
	4. Screening of the preservatives detection methods	13
	4.1 Formalin detection methods	13
	4.2 Hydrogen peroxide detection methods	18
III.	Materials and Methods	20
	1. Materials	20
	1.1. Buffalo's milk	20
	1.2. Rennet	20
	1.3. Salt	20
	1.4. Formaldehyde solution	20
	1.5. Hydrogen peroxide solution	20
	2. Experimental procedures	20
	2.1. Mechanical skimming of milk	20
	2.2. Spiking of skimmilk by preservatives	20
	2.3. Preparation of UF-retentate	21
	2.4. Spiking UF-retentate by preservatives	21
	2.5. Production of cast UF-white soft cheese	21
	3. Methods of analyses	22
	3.1. Chemical analyses	22

		Page
	3.1.1. Descriptive detection of formaldehyde	22
	3.1.2. Descriptive detection of hydrogen peroxide	22
	3.1.3. Determination of dry matter content	22
	3.1.4. Determination of fat content	22
	3.1.5. Determination of total nitrogen and water	
	soluble nitrogen content	22
	3.1.6. Determination of ash content	22
	3.1.7. Determination of titratable acidity content	23
	3.1.8. Protein fractionation by Gel-filtration	23
	3.1.9. Protein fractionation by Sodium Dodecyl Sulfate	23
	(SDS) Polyacrylamide Gel Electrophoresis	
	(PAGE)	
	3.1.10. Determination of amino acids composition	27
	3.1.11. Calculation of theoretical biological parameters	28
	3.2. Physical analyses	29
	3.2.1. Determination of pH value	29
	3.2.2. Determination of milk clotting time	29
	3.2.3. Measurement of synersis rate	29
	3.2.4. Measurement of cheese firmness	29
	3.3. Microbiological analyses	29
	3.3.1. Determination of standard plate count	29
	3.3.2. Counting of coliform bacteria	30
	3.3.3. Determination of yeasts and moulds count	30
	3.4. Statistical analyses	30
IV.	Results and Discussion	31
	Part I Properties of milk protein in relation to	31
	formaldehyde or hydrogen peroxide	
	1. Enzymatic coagulation properties of milk in relation	31
	to formaldehyde or hydrogen peroxide	
	1.1. Rennet clotting time	31

	Page
1.2. Curd firmness	33
1.3. Curd synersis	33
2. Chemical properties of milk proteins in different	
forms in relation to formaldehyde or hydrogen peroxide	37
2.1. Sephadex G100-chromatogramic properties	37
2.2. SDS-PAGE-electrophoregramic properties	42
2.3. Amino acids composition	49
2.4. Nutrition aspects of milk proteins in different	
forms in relation to formaldehyde or hydrogen	60
peroxide	
Part II Cast UF-white soft cheese properties in relation	
to formaldehyde or hydrogen peroxide added to precheese	63
1. Qualitative detection of preservatives	63
2. Gross composition	64
3. Ripening indices	69
4. Chromatogramic properties of cheese proteins	74
5. Electrophoregramic properties of cheese proteins	78
6. Rheological profile	91
7. Microbiological properties	94
V. Summary and Conclusion	98
VI. References	104
VII. Arabic summary.	

LIST OF TABLES

No.		Page
1.	Rennet clotting time (sec.) and penetration value (mm) indicating inversely the curd firmness of	
	buffalo's skimmilk spiked with different levels of	
	formaldehyde (FA) or hydrogen peroxide (H_2O_2)	
	solution	32
2.	Curd synersis percent of buffalo's skimmilk spiked	32
	with different levels of formaldehyde (FA) or	
	hydrogen peroxide (H ₂ O ₂) solution	34
3.	Facterial analysis of data given in Table (1-2)	35
4.	SDS-PAGE proteins fractions of acid and rennet	
	curds of buffalo's skimmilk as affected by milk	
	spiking with different levels of formaldehyde (FA) or	
	hydrogen peroxide (H ₂ O ₂) solution	45
5.	Facterial analysis of data given in Table (4)	46
6.	Amino acids composition (g/100g proteins) of each	
	buffalo's skimmilk, its acid and rennet curds as	
	affected by milk spiking with nil and 0.3%	
	formaldehyde (FA) or hydrogen peroxide (H ₂ O ₂)	
	solution	50
7.	Facterial analysis of data given in Table (6)	51
8.	Protein efficiency ratio (PER), biological value (BV)	
	and net protein utilization (NPU) of each buffalo's	
	skimmilk, its acid and rennet curds as affected by	
	milk spiking with nil and 0.3% formaldehyde (FA)	
0	or hydrogen peroxide (H ₂ O ₂) solution	61
9.	Facterial analysis of data given in Table (8)	62
10.	The qualitative results of the preservatives detection	
	in cast UF-white soft cheese during cold storage at	
	5°C as a function of precheese treating either by	
	adding nil and 0.3% formaldehyde or hydrogen	
	peroxide solution or/and further heating at 72°C/20	<i>C</i> 1
	sec. after preservative adding.	64

11.	Gross composition of cast UF-white soft cheese during cold storage at 5°C as a function of precheese treating either by adding nil and 0.3% formaldehyde or hydrogen peroxide solution or/and further heating	
	at 72°C/20 sec. after preservative adding.	65
12.	Facterial analysis of data given in Table (11)	66
13.	Ripening indices of cast UF-white soft cheese during cold storage at 5°C as a function of precheese treating either by adding nil and 0.3% formaldehyde or hydrogen peroxide solution or/and further heating	
	at 72°C/20 sec. after preservative adding.	70
14.	Facterial analysis of data given in Table (13)	71
15.	SDS-PAGE proteins fractions of cast UF-white soft cheese during cold storage at 5°C for 4 weeks (W)as a function of precheese treating either by adding nil and 0.3% formaldehyde or hydrogen peroxide solution or/and further heating at 72°C/20 sec. after	
	preservative adding.	82
16.	Facterial analysis of data given in Table (15)	83
17.	Penetration values (mm) indicating inversely the matrix firmness of cast UF-white soft cheese during cold storage at 5°C as a function of precheese treating either by adding nil and 0.3% formaldehyde or hydrogen peroxide solution or/and further heating at 72°C/20 sec. after preservative adding.	91
18.	Facterial analysis of data given in Table (17)	92
19.	Microbiological properties of cast UF-white soft cheese during cold storage at 5°C as a function of precheese treating either by adding nil and 0.3% formaldehyde or hydrogen peroxide solution or/and further heating at 72°C/20 sec. after preservative	95
	adding.	
20.	Facterial analysis of data given in Table (19)	96

LIST OF FIGURES

No.		Page
1.	Partition chromatograms on Sephadex G100 gel filtration of buffalo's milk proteins as a function of the level of formaldehyde (FA) or hydrogen peroxide (H ₂ O ₂) solution added to it.	38
2.	Partition chromatograms on Sephadex G100 gel filtration of curd proteins of buffalo's milk as a function of the kind of coagulation as well as the level of formaldehyde (FA) or hydrogen peroxide	30
	(H ₂ O ₂) solution added to it.	39
3.	Electrophoretic patterns of SDS-PAGE proteins fractions (mainly caseins) of curd proteins of buffalo's milk as a function of the kind of coagulation as well as the level of formaldehyde	
	(FA) or hydrogen peroxide (H ₂ O ₂) solution added to it.	43
4.	Partition chromatograms on Sephadex G100 gel filtration of cast UF-white soft cheese proteins during cold storage period as a function of precheese treating either by adding nil and 0.3% of formaldehyde (FA) or hydrogen peroxide (H ₂ O ₂) solution and/or further heating at 72°C/20 sec. after	
5.	preservative adding Electrophoretic patterns of SDS-PAGE proteins fractions of cast UF-white soft cheese proteins during cold storage period as a function of precheese treating either by adding nil and 0.3% of formaldehyde (FA) or hydrogen peroxide (H ₂ O ₂) solution and/or further heating at 72°C/20	75
	sec. after preservative adding	79

LIST OF ABBREVIATIONS

: Association of Official Analytical Chemists. **AOAC**

 ^{0}C : Degree centigrade.

: Centimeter. cm

· Double distilled water ddH2O DNA : Deoxyribonucleic acid.

: for example. e.g

: Egyptian Organization Standardization and **EOSQC**

Quality Control.

EPA : Environmental Protection Agency.

et al : and others : Fento = 10^{-15} f

: Food and Agriculture Organization. **FAO FMOC** : 9-Fluorenylmethylchloroformate.

: Gram. g. h : Hour.

HPLC : High Performance Liquid Chromatography.

 ^{131}I : Iodine-131. : Kilogram.

: Liter. 1 M : Mole.

kg

 m^2 : Square meter. : Milligram.

mg min : Minute. : Milliliter. ml : Millimeter. mm : Nanometer. nm

OPA : O-phtalaldehyde.

: Polyacrylamide Gel Electrophoresis. PAGE

: Relative front. $R_{\rm F}$ **RNA** : Ribonucleic acid. RP-HPLC : Reverse phase High Performance Liquid

Chromatography.

SDS : Sodium dodecyl sulfate.

sec : Second.

SPSS : Statistical analyses according to statistical

system.

 $T_{1/2}$: Half-shelf life.

TEMED : N, N, N, N Tetramethylethylindiamine.

UF : Ultrafiltration.

w : Weeks.

WPF : Whey Protein-Free.

μg : Microgram.μl : Microliter.% : Percent.