ROLE OF UITRASONOGRAPHY AND DUPLEX IN DETECTION OF RENAL ALLOGRAFT COMPLICATIONS

Essay

Submitted For Partial Fulfillment of Master Degree of **Radiodiagnosis**

By Hany Abd El Kader Mohamed

M.B., B.ch., Cairo University

Under Supervision Of

Prof. Dr. Sameh Mohamed AbdEl Wahab

Assistant Professor Of Radiodiagnosis
Faculty Of Medicine, Ain Shams University

Prof .Dr. Hosny Mohamed Hosny Hamza

Lecturer of Radiodiagnosis
Faculty Of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2006

ACKNOWLEDGEMENT

First and above all, all thanks to **ALLAH** the merciful, the compassionate without his help, I could not finish this work.

First and foremost I would like to express my deepest gratitude, appreciation and sincere thanks to **Dr. Sameh Mohamed Abd El Wahab**, for his valuable guidance, great help, kindness and patience throughout this work.

My profound gratitude goes to **Dr. Hosny Mohamed Hosny Hamza** for his generous co-operation and his share in supervising this work, not only he taught me the knowledge but also the high morals, pure spirit and seeking perfection in all what I do.

Hany Abd El Kader Mohamed

LIST OF CONTENTS

Title	Page No.
Introduction and aim of the work	1
Review of literature	
1. Normal Renal Anatomy	3
2. Surgical technique of renal transplantion	12
3. Technique and normal appearance of sonographic i	maging17
a. Sonography, colour and power Doppler	17
b. Ultrasound guided renal biopsy	39
4. Complications of renal transplantation	43
5. Imaging of renal transplant complications	72
Summary and conclusion	100
References	102
Arabic summary	120

LIST OF FIGURES

Fig.	No. Title Page. No.	
1.1	Internal structures of the kidney 6	
1.2	Vasculature of the kidney9)
1.3	Normal renal angiogram1	0
1.4	Renal lymphatic drainage 1	1
2.1	Surgical technique (cadaveric graft) 1	5
2.2	Surgical technique, graft of living donor, end- to- side anastomosis	5
2.3	Surgical technique, graft of living donor, end to end anasotmosis	6
3.1	Normal sonogrpahic appearance of the renal transplant 2	0
3.2	Aliasing artifact	6
3.3	Normal colour Doppler of the renal transplant 3	0
3.4	Normal colour Doppler of the main rena7l vessels 3	1
3.5	Normal spectral Doppler of the main renal artery 3	5
3.6	Normal spectral Doppler of the intrarenal vessels 3	6
3.7	Normal spectral Doppler of the main renal vein	6
3.8	Normal power Doppler of renal transplant	8
3.9	Ultrasound guided renal biopsy a	1
3.10	Ultrasound guided renal biopsy b	2
5.1	Sonographic appearance of chronic rejection	5
5.2	Sonographic appearance of chronic rejection with mild hydronephrosis	5
5.3	Colour Doppler of a renal transplant with chronic rejection	6
5.4	Spectral Doppler of a renal transplant with chronic rejection	6
5.5	Spectral Doppler of disfunctioning renal transplant Reversal of diastolic flow	9
5.6	Spectral Doppler of main transplant artery with renal artery stenosis.	3

LIST OF FIGURES(cont.)

Fig.	No. Title	Page. No.	
5.7	Spectral Doppler of an intrarenal artery with renal stenosis.	•	
5.8	Colour doppler of main transplant artery with artery stenosis		
5.9	Spectral Doppler of intrarenal artery with rena thrombosis	al vein	
5.10	Ultrasound of a pseudoaneurysm	88	
5.11	Colour Doppler of a pseudoaneurysm	88	
5.12	Colour Doppler of an AVF	89	
5.13	Spectral Doppler of an AVF feeding artery	90	
5.14	Spectral Doppler of an AVF draining vein	91	
5.15	Ultrasound of a urinoma	93	
5.16	Ultrasound of a lymphocele	95	
5.17	Ultrasound of a ureteric stone	97	
5.18	Colour Doppler of a urine jet	97	
5.19	Ultrasound of a hydronephrotic renal transplant	98	
5.20	Spectral Doppler of interlabor artery of obstructed	kidney 99	

INTRODUCTION

Chronic renal failure is an irreversible condition, in which kidneys lose their function. Chronic renal failure may lead to common global health problem with end stage renal disease. Treatments provided are dialysis or renal transplantation. Due to marked improvement of graft survival, the treatment of choice is renal transplantation (*Tubulin & Dodd*, 1995).

However, Kidney transplantation may be followed by number of complications of parenchymal, urological, and vascular nature. Early diagnosis of these complications may determine the survival of the graft. As graft recipients are fragile patients and they need decisive studies for fear of allograft failure, therefore the diagnostic tool used to assess allograft dysfunction should be non invasive as possible (*Bair et al.*, 1994).

Color duplex sonography is the most easy and rapid non-invasive investigation to evaluate vascular complications and perfusion of the transplanted kidney (*Hollenbeck*, 1994). It provides early and sensitive indicator of acute rejection, which is a major prequisite before the decision for renal biopsy. It also provides very important information regarding the flow situation of the transplanted kidney. The accuracy of color Doppler ultrasonography for detection of main renal transplant artery stenosis is excellent with sensitivity 92% and specificity 99% (*Helenon et al.*, 1994).

AIM OF THE WORK

The aim of this study is to evaluate the use of ultrasonography and duplex for the early detection of renal allograft complications.

Chapter 1

NORMAL RENAL ANATOMY

NORMAL RENAL ANATOMY

Each kidney is of a characteristic shape possessing superior and inferior poles, a gently convex lateral border, and an indented medial border. The anterior and posterior surfaces are usually smoothly convex. The medial border of each kidney presents an oval aperture, the hilum, which is connected to the renal pelvis contains renal vessels, lymphatics and nerves. Each kidney is closely invested by a continous covering of fibrous tissue, the renal capsule. The fat immediately adjacent to the renal capsule is named the "Peri-renal fat". This adipose tissue is enclosed by the renal fascia, which is itself covered both anteriorly and posteriorly by the para- renal fat (Gosling & Dixon, 1995).

The renal size

The adult kidney measures approximately 11 cm from pole to pole, 6 cm from medial to lateral border (the left kidney is usually wider due to presence of splenic hump) and 3 cm from anterior to posterior surface. The parenchymal thickness should not be less than 12 mm. The renal length according to age can be calculated using the following equations:

< 1 year of age : 4.98 + 0.155 x age (in months)

>1 year of age : $6.79 + 0.22 \times age$ (in years)

Ratio between renal length and distance between first four lumbar transverse processes = 1.04 ± 0.22

By measuring renal length, width and antero-posterior diameters from the longitudinal and transverse scans, the renal volume can be assessed using the formula:

$V = 0.49 \times L \times W \times AP$

Where: V = Renal volume

L = Renal length

W = Renal width

AP= Antero-posterior diameter

Normal values of adult renal volume:

Right kidney: 147 ± 38 cc

Left kidney: 154 ± 37 cc

(McGahan and Goldberg, 1997)

An increase in renal volume has been reported post transplantation, with an increase of 16% at the end of the 2^{nd} week and 22% at the end of the 3^{rd} week of renal transplantation (*Hericak et al, 1987*).

As early as 48 hours after surgery, a baseline sonographic examination is performed to determine renal size, calyceal pattern and extra-renal fluid collection. (*Hagen*, 1995).

Within the kidney, the upper expanded end of the ureter is known as the "renal pelvis" which divides into two or three major calyces, each of which divides further into two or three minor calyces. Each minor calyx is indented by the apex of a medullary pyramid called the "renal papilla". The kidney is composed of an internal medullary portion and external cortical substance. The medullary substance consists of a series of striated conical masses, called the "renal pyramids", and their bases are directed towards the outer circumference of the kidney. Their apices converge towards the renal sinus, where their prominent papillae project into the lumina of the minor calyces. As the pelvis leaves the renal sinus, it rapidly becomes smaller and ultimately merges with the ureter, which is about 25 cm long [Fig.1.1]. (*Hagen, 1995*)

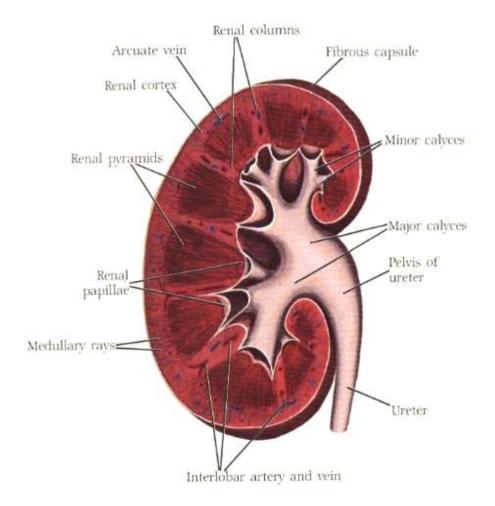


Fig. 1.1: Internal structure of the kidney (Quoted from: Hagen, 1995)

The vascular supply

The arterial supply to the kidney is through the main renal artery. The main renal arteries arise from the abdominal aorta and they are single in 75 % of cases. Arterial duplication is more common on the right side. Both renal arteries almost lie between the upper edges of the first and third lumbar vertebrae, the right renal artery is more often found slightly higher than the left one, even though the right kidney itself is usually lower. The inferior adrenal artery is the first branch of the main renal artery (Ryan & Mcnicholas, 1994).

The renal artery divides within the hilum into 2 branches, a dorsal and a ventral branch (segmental arteries), which subdivide in the kidney into several interlobar arteries, which run through the medulla towards the cortico-medullary junction (*Hagen*, 1995). At the cortico-medullary junction, they acquire an arched course and are known as the (arcuate arteries), which run parallel to the surface of the kidney at the region between the cortex and medulla [Fig. 1.2, 1.3]. From the arcuate arteries arise the "interlobular arteries" that pass outwards towards the surface of the organ. The interlobular arteries break into afferent arterioles of the glomeruli, which divide into tuft of capillaries. These capillaries reunite to form narrow efferent arteriole. The course of the efferent arteriole is as follows:

- *In cortical nephron*: it divides into peri-tubular capillaries to supply the tubules with arterial blood.
- In juxta-medullary nephron: it runs parallel to the loop of henle forming the vasa recta (Becuwkes et al, 1991)

The peri-tubular capillaries and vasa recta drain their blood into the venous plexus. The venous plexus drains into the interlobular veins to drain into the arcuate veins to renal vein (*Becuwkes et al, 1991*).

The Lymphatic Drainage

The renal lymphatic drainage is abundant, follows the blood vessels through the renal columns to exit the renal parenchyma, and forms several large lymphatic trunks within the renal sinus. Communicating lymphatics from the renal capsule and peri-nephric tissues join the trunks as they exit the renal hilum in close association with the renal blood vessels. In addition, lymphatics from the renal pelvis and upper ureter may also join the renal lymphatic trunks. There are often two or more lymph nodes at the renal hilum associated with the renal vein. From the right kidney, the lymphatic trunks drain primarily into inter-aortocaval and lateral paracaval lymph nodes (Kabalin, 1992) [Fig. 1.4].

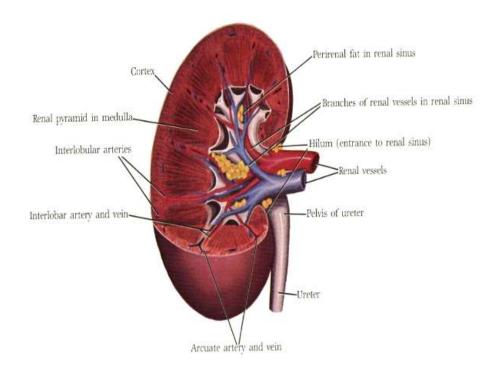


Fig. 1.2: Longitudinal section showing the internal structures and vasculature of the kidney (*Quoted from: Snell, 1988*)