BIOEXTRACTION OF URANIUM FROM SOME EGYPTIAN ORES BY MICROORGANISMS

BY

HALA ALY IBRAHIM

B.Sc. Agric. Microbiology, Ain Shams University (1992)

A thesis submitted in partial fulfillment

of the requirements for the degree of

MASTER of SCIENCE

in

Agricultural Science (Agricultural Microbiology)

Department of Agric. Microbiology Faculty of Agriculture Ain Shams University

2001

BIOEXTRACTION OF URANIUM FROM SOME EGYPTIAN ORES BY MICROORGANISMS

BY

HALA ALY IBRAHIM

B.Sc. Agric. Microbiology, Ain Shams University (1992)

Under the supervision of:

Prof. Dr. Rawia F. Gamal

Prof. of Agric. Microbiol., Fac. of Agric., Ain Shams University.

Prof. Dr .Mamdouh A.G. Hassan

Prof. Emeritus- ex-Chairman, Nuclear Materials Authority.

Dr. Sohair A. Nasr

Associate Prof. of Agric. Microbiol., Fac. of Agric., Ain Shams University.

ACKNOWLEDGMENT

Praise and thanks be to Allah, the most merciful for assisting and directing me to the right way.

I would like to express my deep thanks to **Prof. Dr. Rawia F. Gamal** Professor of Agric. Microbiol., Faculty of Agric., Ain Shams University, for sponsoring this work in the University and her continuous encouragement and support.

Deep thanks to **Prof. Dr. Mamdouh A. G. Hassan,** Professor Emeritus – ex-Chairman of Nuclear Materials Authority, who suggested the problem, for his supervision, significant encouragement and useful discussion for the interpretation of the data.

Special thanks to **Dr. Sohair A. Nasr,** Associate Prof. of Agric. Microbiol., Faculty of Agric., Ain Shams University, for her close supervision, encouragement, and continuous help through all the phases of this work.

Special thanks are also due to **Prof. Dr. E. M. Ramadan** for his helpful advise during his supervision in the early stage of this work.

Special thanks are also due to **Prof. Dr. K.A.Dougdouy** for the statistical analysis of the data.

Thanks for all members of the Nuclear Materials Authority and Dept. of Agric Microbiol, Faculty of Agric., Ain Shams University, for their cooperation and useful help offered during this work.

I wish to thank my family for their assistance and patience over the program of this work.

ABSTRACT

Hala Aly Ibrahim "Bioextraction of uranium from some Egyptian ores by microorganisms" Unpublished M.Sc.Thesis, University of Ain Shams, Faculty of Agriculture, Department of Agric. Microbiology, 2001.

Ninty-seven isolates were obtained from different ores and mine water. Sixty-six of them belonged to fungi group while thirty one belonged to bacteria group. The highest percentage of fungal isolates was obtained from carbonate ore (8 MH). The non-sterilized ores gave high extraction of uranium comparing to the sterilized ores. The highest extraction of uranium being 57.1% and 54.2% U₃O₈ were obtained by Aspergillus terreus and Aspergillus fumigatus respectively, after the fourth day in the presence of 3% g ore/150 ml medium. Using nonsterilized Helwan water as a natural medium in the presence of 3% pulb density increased the extraction by 1.38 fold comparing to the sterilized treatment. highest yield of uranium being 59.25% U₃O₈ was obtained using modified natural medium 4.0 g L⁻¹ (NH₄)₂SO₄,4.0 g L⁻¹ FeSO₄, pH 2.8 and non sterilized ore incubated at 35°C for 21 days. The extraction of uranium reached 71.9% using column technique with 200 ml h⁻¹ withdrawn rate after four days in the presence of 8% pyrite, 1kg ore and modified non sterilized natural medium.Uranium had been recovered from bacterial pregnant leach liquor using Amberlite IRA-400 then precipitated by using NaOH

Key words: Uranium, *Aspergillus fumigatus*, *Aspergillus terreus*, bioleaching, bioextraction.

Contents

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1 Applaction to uranium	3
ores	
2.2 Microorganisms used for extraction of uranium	_
from ores	5
2.3 Extraction of uranium from ores	8
2.4 Factors affecting the extraction of uranium from	0
ores	9
2.4.1 pH	9
2.4.2 Temperature	10
2.4.3 External energy source	10
2.4.4 Grain size of the trated ore	11
2.4.5. oxidation-reduction potential	12
2.5. uranium ore column	12
2.6. Types of uranium deposits in Egypt	13
2.6.1. Qattar vein type deposit	14
2.6.2. Al-Erediya vein type deposit	16
2.6.3. El Missikat vein type deposit	17
2.6.4. Arreef An Naqa occurance	17
2.6.5. Gabal Hamama Phosphate	
occurrence	17
3. Materials and methods	18
3.1. Ore samples	18
3.1.1. Description of samples	19
3.2. Media used	22
3.3. Isolation of different microbial cultures	24
3.4. Bioextraction of uranium from ores	25
3.4.1. shake cultures	25
3.4.2. laboratory column	25
3.5. Standard inoculum	26
3.6. Effect of soaking period of ores in tap water on	
their final pH values	26
3.7. Screening of acid producer isolates as indication	
for ore leaching	26

3.8. Growth rate pa	arameters of fungi	28
	e highest efficiency isolates for	
uranium extra	ction from ore	28
3.10. Effect of diff	Ferent weight of ore on uranium	
extraction		29
3.11. Effect of income	ubated temperature on uranium	
extraction		29
3.12. Effect of ster	rilization of ores	29
3.13. Collection of	samples	29
3.14. Chemical and	alysis for the major oxides	30
3.15. Determination	on of pH and Eh	30
3.16 Determination	n of uranium	30
3.17. Determination	on of citric acid	31
3.18. Choose the s	uitable ore for extraction of uranium	
by using mix	xture of <i>Thiobacillus</i>	31
	wan water as a natural culture	
on extraction	of uranium using shake	
	ique	32
3.20. Effect of o	different concentrations of ferrous	
-	n extaction of uranium	32
	ling different concentrations of	
= ·	action of uranium	33
3.22. Effect of		
	sulphate on extraction of uranium	33
	lifferent size mesh of ore on the	
	of uranium	33
	overy from bacterial pregnant leach	
-		33
4. RESULTS AND DISC		35
	lysis of ores	35
	ing period of ores in tap water on	35
their final pH		
	icroorganisms from different	
Egyptian ores.		35
	fungal isolates for acid production	39
<u> </u>	eters of acid producer isolates of	4.1
Aspergillus sp		41
	neters of acid producing isolates of	40
	sp	43
4./. Factors affect	ing the extraction of uranium by the	

tested fungi using shake culture technique	43
4.7.1. Incubation period	43
4.7.2. Ore Sterilization	48
4.7.3. Weight of ores (pulp density) and citric acid	
productin	51
4.7.4. Incubation temperature	
4.7.5. Effect of incubation period on the accumulation	
of uranium in mycelium cells	60
4.8. Factor affecting the extraction of uranium from	
granite ore by natural flora using shake culture	
technique	63
4.8.1 Soaking period	63
4.8.2. Effect of Helwan water and	
natural medium	71
4.8.3. Ammonium sulphate (NH ₄) ₂ SO ₄	
concentration	74
4.8.4. Ferrous sulphate (FeSO ₄)	
concentration	74
4.8.5. pyrite (FeS ₂) concentations	77
4.8.6. Size mesh of granite ore (4MH)	80
4.8.7. Incubated temperature	83
4.9. Column leaching technique	89
4.9.1. Effect of withdrawal rate on	89
uranium extraction, pH and Eh	
4.92. Effect of pyrite addition on U ₃ O ₈	90
extraction, pH and Eh	
4.10. Uranium recovery from bacterial pregnant leach	
liquors	96
5. Summary	99
6. References	101
Arabic summary	

LIST OF FIGURES

Figure No.	Page
1. A simplified geological map of Egypt with location of uranium occurrence and areas of uranium potentialities	15
2. Column leaching experiment set-up	28
3. The percentage of fungal and bacterial isolates obtained from	
different Egyptian ores	40
4. Effect of incubation period at 30°C on the bioextraction of uranium 4MH ore by tested fungal isolates using shake	47
culture technique	47
isolate during uranium (4MH ore) extraction using shake culture technique	47
6. Effect of ores sterilization on uranium extraction by Aspergillus	Τ,
fumigatus and Aspergillus terreus	50
7. Effect of sterilized and non sterilized ore on final pH obtained in	
shake flask using Aspergillus fumigatus and Aspergillus	51
terreus	
8. Effect of different weights of ores on extraction of uranium and	
citric acid (%) production by Aspergillus fumigatus using	
shake culture technique.	57
9. Effect of different weights of ores on extraction of uranium and	
citric acid % production by Aspergillus terreus using shake	5 0
culture technique	58
10. Effect of incubation period on the accumulation and leaching of uranium in mycellium cells using <i>Aspergillus fumigatus</i> and <i>Aspergillus terreus</i>	62
11. Effect of different incubation temperature on uranium	02
extraction by Aspergillus fumigatus(5)	67
12. Effect of incubate temperature on final pH obtained in shake	0.
flask using Aspergillus fumigatus(5)	67
13. Effect of incubation temperature on uranium extraction by	
Aspergillus terreus (42)	68
14. Effect of incubate temperature on final pH obtained in shake	60
flask using Aspergillus terreus(42)	68
15. Effect of soaking period of different ores in Thiobacillus	
medium on extraction of uranium (%) using shake culture	70
technique	70

16. Effect of using Helwan water and natural medium on the extraction of uranium by using shake culture technique17. Effect of ammonium sulphate concentration on uranium	73
extraction using natural culture and 3% pulp density	76
18. Effect of ammonium sulphate concentration on final pH using natural culture and 3% pulp density	76
19. Effect of ferrous sulphate concentration on uranium extraction obtained in shake flask experiments using natural medium	70
and 3% pulp density	78
in shake flask experiments using natural medium and 3% pulp density	79
21. Effect of pyrite concentration on uranium extraction obtained	
in shake flash experiments using natural medium and 3% pulp density	82
22. Effect of different concentrations of pyrite on final pH extraction obtained in shake flask using natural medium and	92
3% pulp density	82
technique	86
non-sterilized modified natural medium using shake culture technique	88
25. Effect of temperature on final pH in non-sterilized modified	88
natural medium using shake culture technique	00
column technique	95
27. Effect of withdrawing rate on final pH using column technique	95
28. Effect of withdrawing rate on Eh using column technique	95
29. Uranium adsorption curve of leach liquior by using ion	
exchange technique Amberlite IRA-400 Resin	98
30. Uranium elution curves of Amberlite IRA-400 Resin loaded	98

LIST OF PHOTOGRAPHS

Photo No.	Page
1. Qatter location	20
2. Silicified granite with red, yellow and black spots from Qatter	
uranium occurrence	20
3. Silicified granite with pink and brown from Al-Aardiya location	
uranium occurrence	21
4. Silicified granite with highly silicified reddish granite from Al-	
Missikat location uranium occurrence	21
5. Silicified marly limestone white chalky limestone with	
yellowish spots from Arief El-Naga uranium occurrence	22
6. Silicified phosphate rock brown yellow from Jabal Hamama	
uranium occurrence	22

LIST OF TABLES

Table No.	Page
 Description of the samples. Chemical analysis of ores. 	18 36
3. Effect of soaking period of ores in tap water on final pH values	37
4. The percentage of fungal and bacterial isolates obtained from different Egyptian ores and mine water	38
5. Screening of acid producing fungal isolates as indication for bioextraction of uranium from ore	42
6. Specific growth rate and doubling time of <i>Aspergillus</i> acid producing isolates from different ores on Czapeck's medium throughout 3 days	44
7. Specific growth rate and doubling time of <i>Penicillium</i> acid producing isolates from different ores on Czapeck's	
medium throughout 3 days 8. Effect of incubation period on the bioextraction of uranium (3g 4MH ore) by the tested fungal isolates	45
using shake culture technique	46
Aspergillus terreus and Aspergillus fumigatus using shaker culture technique	50
acid % production by Aspergillus fumigatus using shake culture technique	52
11. Effect of different weights of ore on uranium extraction and citric acid % ml production by <i>Aspergillus terreus</i> using shake culture technique	54
12. Statistical analysis of the effect of different weights of ore on the extraction of uranium and citric acid % by the	
two tested strains	56
medium	64

extraction and final pH using 3 g ore /flask Aspergillus terreus and Aspergillus fumigatus	
using shake culture technique	65
15. Statistical analysis for effect of different incubate	03
temperature on uranium extraction 3 g ore /flask	
Aspergillus terreus and Aspergillus fumigatus	
using shake culture technique	66
16. Effect of soaking period of different ores in Thiobacillus	
medium on extraction of uranium using shake	
culture technique	69
17. Statistical analysis of the effect of soaking period of	
different ores in Thiobacillus medium on uranium	69
extraction	
18. Effect of using Helwan water and natural medium on	
the extraction of uranium and final pH by using shake	
culture technique	72
19. Effect of different concentrations of ammonium sulphate	72
(NH ₄) ₂ SO ₄ in non-sterilized natural medium on	
uranium extraction and final pH at different	75
incubated periods	75
20. Effect of different concentrations of ferrous sulphate	
FeSO ₄ in non-sterilized natural medium on	
uranium extraction using shake culture technique	78
21. Effect of adding different concentrations of pyrite (FeS ₂)	
instead of FeSO ₄ in non-sterilized natural medium	
on uranium extraction and final pH using shake	
culture technique	81
22. Effect of size mesh of Granite ore in non-sterilized	
modified natural medium on uranium extraction	
using shake culture technique	85
23. Statistical analysis of the effect of size mesh of Granite	
ore in non-sterilized modified natural medium on	
uranium extraction using shake culture technique.	85
dramam extraction using snake culture technique.	05
24. Effect of incubation temperature on uranium extraction in	
non-sterilized modified natural medium using	
	07
shake culture technique	87
25. Effect of withdrawing rate on uranium extraction, pH and	02
Eh using column technique 1 st rate (120 ml/h)	92
26. Effect of withdrawn rate on uranium extraction, pH and	