Numerical Investigation of NOx and CO Formation in a 200 kW Swirl Burner

By
Eng. Abdallah Abdelaty Zaki Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE

In
MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA – EGYPT

2014

Numerical Investigation of NOx and CO Formation in a 200 kW Swirl Burner

By
Eng. Abdallah Abdelaty Zaki Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Under Supervision of
Prof. Dr. Essam E. Khalil Hassan Prof. Dr. Mohamed Mahmoud Ali
Dr. Hatem Omar Haridy Kayed

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA – EGYPT

2014

Numerical Investigation of NOx and CO Formation in a 200 kW Swirl Burner

By
Eng. Abdallah Abdelaty Zaki Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE

In MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil Hassan Khalil	Thesis Main Advisor
Prof. Dr. Mohamed Mahmoud Ali Hassan	Thesis Advisor
Prof. Dr. Abdelhafez Hassanein Abdelhafez	Internal Examiner
Prof. Dr. Hany Ahmed Moneib	External Examiner
(Prof. in Faculty of Engineering Helwan University)	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA – EGYPT

2014

Engineer: Abdallah Abdelaty Zaki Ahmed

Date of Birth: 10 / 11 / 1988 Nationality: Egyptian

E-mail: aymanshaaban@eng.cu.edu.eg

Phone: 01224727084

Address: 3 Hammed Harb St., Helwan, Cairo

Registration Date: 01 / 10 / 2011

Awarding Date: / /

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors:

Prof. Dr. Essam E. Khalil Hassan Khalil Prof. Dr. Mohamed Mahmoud Ali Hassan Dr. Hatem Omar Haridy Kayed

Examiners:

Prof. Dr. Essam E. Khalil Hassan Khalil Prof. Dr. Mohamed Mahmoud Ali Hassan Prof. Dr. Abdelhafez Hassanein Abdelhafez

Prof. Dr. Hany Ahmed Muneeb (**Prof. in Faculty of**

Engineering Helwan University)

Title of Thesis: NUMERICAL INVESTIGATION OF NOx AND CO FORMATION IN A 200 kW SWIRL BURNER

Key Words: Combustion, Swirl, NOx emissions, CO emissions, CFD.

Summary:

A CFD model of the Swirl Burner has been tested and evaluated using FLUENT. The Swirl Burner was modelled using a 2D structured grid consisting of about 45,000 cells with an average skewness of 0.04. Three turbulence models were tested on a cold flow with a flow rate equivalent to 200 kW. These were the k-\$\varepsilon\$ model, the Realizable k-\$\varepsilon\$ model and the Reynolds Stress Model (RSM). Based on an evaluation of the models ability to predict a central toroidal recirculation zone of this strong swirling flow (S>0.6) and recommendations from literature, the RSM was chosen for further modelling of the reacting flow. With the RSM turbulence model, three different combustion models were tested. These models were the Eddy Dissipation model, the PDF-based Equilibrium model and the PDF-based Flamelet model. For the reaction models, the Eddy Dissipation model predicted peak flame temperatures higher than the adiabatic flame temperature for a propane-air mixture and was therefore dismissed. The Flamelet PDF model was chosen for the modelling of the swirl burner due to its ability to account for non-equilibrium chemistry. The decision of choosing the Flamelet PDF model was also based on recommendations found in literature.

Effect of swirl number, excess air factor, fuel dilution with N_2 and CO_2 , oxidizer preheating, and oxidizer composition on NO_x and CO emissions at the combustion chamber exit were studied. Peak flame temperature is the dominating parameter, which controls NOx and CO Emissions. The higher flame temperature resulted, the higher NOx and CO emissions level formed.

Acknowledgments

Firstly, I would like to thank Almighty Allah, whom I owe everything, for His generousness and support through all my life.

I would like to thank Prof. Essam E. Khalil, Prof. Mohamed M. Ali Hassan, and Dr. Hatem Omer Haridy for their guidance, unremitting encouragement and distinctive supervision. I am grateful to them, and to all of my respectful professors, for mentoring me throughout my undergraduate and graduate studies.

I extend my gratitude to Eng. Fawzy Abdelaziz for his valuable suggestions and noteworthy discussions. I would to like to thank Eng. Ayman Fared for providing me with his technical language tips. Thanks are also to my colleagues and friends for their encouragement and support.

Finally, I would like to thank my family for their continuous support, for helping me achieving my targets and for providing me suitable atmosphere for study and research. Special thanks to my fiancee Eng. Sara Ibrahim for invaluable encouragement and support while working with this thesis.

Table of Contents

ACKNOWLEDGMENTS	I
TABLE OF CONTENTS	II
LIST OF FIGURES	V
LIST OF TABLES	IX
NOMENCLATURE	X
SYMBOLS AND QUANTITIES	X
GREEK LETTERS	XI
SUPERSCRIPTS AND SUBSCRIPTS	XI
ABBREVIATIONS	XII
ABSTRACT	XIII
CHAPTER 1: INTRODUCTION	1-
1.1 BACKGROUND	1 -
1.2 NITROGEN OXIDES	2 -
1.3 CARBON MONOXIDE	3 -
1.4 COMPUTATIONAL FLUID DYNAMICS	4 -
1.5 Present work	5 -
CHAPTER 2: LITERATURE REVIEW	6 -
2.1 Introduction	6 -
2.2 NITROGEN OXIDES	8 -
2.2.1 NOx formation mechanisms	8 -
2.2.2 NOx reducing techniques	- 10 -
2.3 CARBON MONOXIDE	20 -
2.3.1 CO formation	- 20 -
2.3.2 CO reduction techniques	22 -
2.4 COMPARISON OF METHANE AND PROPANE AS FUELS	24 -
2.5 EGYPTIAN EMISSION LIMITS AND REGULATIONS	27 -

2.5.1 Relevant regulations concerning emission sources	27 -
2.5.2 Relevant regulations concerning workplace emissions	28 -
2.6 SCOPE OF THE PRESENT WORK	28 -
CHAPTER 3: MATHEMATICAL MODELING	29 -
3.1 FLUID ELEMENT	29 -
3.2 Mass Conservation Equation (Continuity)	30 -
3.3 MOMENTUM CONSERVATION EQUATION	30 -
3.4 ENERGY CONSERVATION EQUATION	31 -
3.5 SPECIES TRANSPORT EQUATION	31 -
3.6 TURBULENCE MODELING	32 -
3.6.1 Standard k-ε Model	33 -
3.6.2 Realizable k- ε Model	34 -
3.6.3 RNG k- ε Model	35 -
3.6.4 The Reynolds Stress Model (RSM)	37 -
3.7 MODELING OF SWIRL FLOW	38 -
3.8 NON-PREMIXED COMBUSTION MODELLING	38 -
3.8.1 The eddy dissipation model	39 -
3.8.3 Mixture Fraction Theory	40 -
3.8.4 Transport Equations for the Mixture Fraction	40 -
3.8.5 Description of the Probability Density Function	41 -
3.8.6 The Flamelet Concept	42 -
3.8.7 Flamelet Generation	43 -
3.9 RADIATION MODELLING	43 -
CHAPTER 4: NUMERICAL MODELING AND VALIDATION	47 -
4.1 DESCRIPTION OF THE MODELED BURNER AND COMBUSTION CH	AMBER- 47 -
4.2 GRID DESCRIPTION	49 -
4.3 BOUNDARY DESCRIPTION	51 -
4.4 The solver	52 -
4.5 EVALUATION OF TURBULENCE MODELS	52 -
4.6 EVALUATION OF COMBUSTION MODELS	56 -

4.7 COMPARISON OF COMPUTED NOX WITH MEASURED NOX	60 -
CHAPTER 5: RESULTS AND DISCUSSION	62 -
5.1 EFFECT OF SWIRL NUMBER	62 -
5.2 EFFECT OF EXCESS AIR FACTOR	67 -
5.3 EFFECT OF FUEL DILUTION (N ₂)	72 -
5.4 EFFECT OF FUEL DILUTION (CO2)	78 -
5.5 EFFECT OF THE AIR PREHEATING TEMPERATURE	84 -
5.6 EFFECT OF THE OXIDIZER COMPOSITION	89 -
CHAPTER 6: CONCLUSIONS AND FUTURE WORK	
RECOMMENDATIONS	94 -
6.1 CONCLUSION	94 -
6.2 RECOMMENDATIONS FOR FURTHER WORK	94 -
REFERENCES	96 -
APPENDIX	99 -

List of Figures

Figure 1.1: World primary energy supply, 1971-2020 1 -
Figure 1.2: Sector share of nitrogen oxides emissions
Figure 1.3: Sector share of carbone monoxide emissions
Figure 2.1: Profiles of concentration and temperature in a one-dimensional, premixed, adiabatic flame6 -
Figure 2.2: Spatial concentration profiles for fuel, oxygen and reaction products through a cross- section of a laminar diffusion flame
Figure 2.3: Characterization of diffusion flame structures with increase in nozzle velocity 8 -
Figure 2.4: NOx formation rate driven by temperature 10 -
Figure 2.5: Schematic drawing of (a) air staging, and (b) fuel staging 11 -
Figure 2.6: Emission index for NOx, and CO and plotted as a function of $\boldsymbol{\phi}$ 12 -
Figure 2.7: NOx emissions for methane with air, N2 or CO2 as diluent 13 -
Figure 2.8: External flue gas recirculation system
Figure 2.9: Axial confined jet and secondary recirculation 14 -
Figure 2.10: Creation of a central toroidal recirculation zone resulting from swirl
Figure 2.11: Recirculation caused by wake behind a bluff body 15 -
Figure 2.12: Mean centerline axial velocity 16 -
Figure 2.13: Mean axial and radial velocity profiles at $S = 0.56$ 17 -
Figure 2.14: Mean axial and radial velocity profiles at $S=1.12$ 17 -
Figure 2.15: the effect of pressure on NOx formation 18 -
Figure 2.16: Catalytic combustion improvement over the years 19 -
Figure 2.17: Comparison of conventional and catalytic gas turbine 19 -
Figure 2.18: Effects of CO exposure on humans 20 -
Figure 2.19: Influence of primary-zone temperature on CO emissions 21 -

Figure 2.20: Influence of equivalence ratio on CO emission 22 -
Figure 2.21: Influence of pressure on CO emission
Figure 2.22: NOx and CO emissions as a function of power output and fuel, swirl number: S=2.7
Figure 2.23: Effects of partial premixing on flame temperatures and NOx emission indices for different fuels 26 -
Figure 3.1: Fluid element for conservation laws
Figure 4.1: Schematic view of the apparatus rig 47 -
Figure 4.2: Swirl generator diagram indicating d, d_h and β 48 -
Figure 4.3: Burner insert for Swirl Burner (370 kW) showing swirl vanes and fuel nozzles upstream and downstream of the swirl generator 48 -
Figure 4.4: Grid independency study for NOx emitted from 200 kW swirl burner at different mesh size. ————————————————————————————————————
Figure 4.5: Close-up of the burner section of the grid, with air and fuel inlet 50
Figure 4.6: the skewness of the grid elements 51 -
Figure 4.7: Central toroidal, and corner recirculation zones ; (a) Standard k-e; (b) Realizable k-ε; (c) RSM54 -
Figure 4.8: Mean axial velocities at various positions above the burner (h) using the standard k-ε model, the realizable k-ε model and the RSM for an isothermal flow.
Figure 4.9: Contours of zero-axial velocities; (a) Eddy Dissipation; (b) Equilibrium PDF; (c) Flamelet PDF 56 -
Figure 4.10: Computed velocities in Swirl Burner, coloured by axial velocity; (a) Eddy Dissipation; (b) Equilibrium PDF; (c) Flamelet PDF 58 -
Figure 4.11: Contours of temperature (K); (a) Eddy Dissipation; (b) Equilibrium PDF; (c) Flamelet PDF 59 -
Figure 4.12: The comparison of computed NOx concentrations with experimental measured NOx concentrations. ————————————————————————————————————
Figure 5.1: NOx emissions as a function of the swirl number 62 -
Figure 5.2: CO emissions as a function of the swirl number 63 -

Figure 5.3: Peak flame temperature as a function of the swirl number 63 -
Figure 5.4:Recirculation Zones at S= 0.6, 0.7, 1.0, 2.0, 3.0, 4.0 64
Figure 5.5: OH mole fraction contours at S= 0.6, 0.7, 1.0, 2.0, 3.0, 4.0 65 -
Figure 5.6: Temperature contours (K) at S= 0.6, 0.7, 1.0, 2.0, 3.0, 4.0 66 -
Figure 5.7: NOx emissions as a function of the excess air factor 67 -
Figure 5.8: CO emissions as a function of the excess air factor 68 -
Figure 5.9: : Peak flame temperature as a function of the excess air factor 68 -
Figure 5.10: Recirculation Zones at EAF= 0, 5, 10, 20, 25, 30% 69 -
Figure 5.11: OH mole Fraction contouts at EAF=0, 5, 10, 20, 25, 30% 70 -
Figure 5.12: Temperature contouts (K) at EAF=0, 5, 10, 20, 25, 30% 71 -
Figure 5.14: NOx emissions as a function of N ₂ mixing ratio 73 -
Figure 5.15: CO emissions as a function of N_2 mixing ratio 73 -
Figure 5.16: Peak flame temperature as a function of N_2 mixing ratio 74 -
Figure 5.17: Recirculation zones at N_2 mixing ratio= 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 kg_{N2}/kg_f 75 -
Figure 5.18: OH mole fraction contours at N_2 mixing ratio= 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 kg_{N2}/kg_f 76 -
Figure 5.19: Temperature contours (K) at N2 mixing ratio= 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 kg_{N2}/kg_f
Figure 5.20: NOx emissions as a function of CO ₂ mixing ratio 79 -
Figure 5.21: CO emissions as a function of CO ₂ mixing ratio 79 -
Figure 5.22: Peak flame temperature as a function of CO ₂ mixing ratio 80 -
Figure 5.23: Recirculation zones at CO_2 mixing ratio= 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 kg_{CO2}/kg_f 81 -
Figure 5.24: OH mole fraction contours at CO_2 mixing ratio= 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 kg_{CO2}/kg_f
Figure 5.25: Temperature contours (K) at CO ₂ mixing ratio= 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 kg _{CO2} /kg _f

Figure 5.26: NOx emissions as a function of the preheating temperature 84 -
Figure 5.27: CO emissions as a function of the preheating temperature 85 -
Figure 5.28: Peak flame temperature as a function of the preheating temperature 85 -
Figure 5.29: Recirculation zones at preheating temp.= 400, 500, 600, 700, 800, 900 K86 -
Figure 5.30: OH mole fraction contours at preheating temp.= 400, 500, 600, 700, 800, 900 K87 -
Figure 5.31: Temperature contours (K) at preheating temp.= 400, 500, 600, 700, 800, 900 K
Figure 5.32: NOx emissions as a function of the oxidizer composition 89 -
Figure 5.33: CO emissions as a function of the oxidizer composition 90 -
Figure 5.34: Peak flame temperature as a function of the oxidizer composition
Figure 5.35: Recirculation zones at oxidizer composion $O_2\%=21,40,60,80,95,100\%$.
Figure 5.36:OH mole fraction contours at oxidizer composion $O_2\%=21,40,60,80,95,100\%$.
Figure 5.37: Temperature contours (K) at oxidizer composion $O_2\%=21,40,60,80,95,100\%$ 93 -
Figure 7.1: a) The gas tube without the burner tube and the combustion chamber b) The burner without the combustion chamber99-
Figure 7.2: The combustion chamber and its water cooling system99-
Figure 7.3: Combustion chamber geometries100-
Figure 7.3: Swirl burner geometries100-

List of Tables

Table 2.1: Chemical properties of methane and propane 2	24 -
Table 2.2: Maximum limits of NOx and CO emissions from industrial establishments	27 -
Table 2.3: Maximum limits of air pollutants inside the work place 2	28 -
Table 4.1: Three different meshing sizes 4	ļ9 -
Table 4.2: Flow-rates for fuel and air inlets (3% O2 in flue gas) 5	51 -
Table 4.3: Under-relaxation factors used in the simulations 5	52 -
Table 5.1: Properties for different Nitrogen to fuel ratio at 200 kW 7	12 -
Table 5.2: Properties for different Carbon dioxide to fuel ratio at 200 kW 7	18 -

Nomenclature

Symbols and Quantities

a	Sonic speed
C	Constant
c_p	Constant pressure specific heat
D	Diffusion coefficient
E	Total Energy of fluid particle
\vec{F}	External Body Forces
g	Acceleration of gravity
G_k	Generation of turbulence kinetic energy due to mean velocity gradients
G_b	Generation of turbulence kinetic energy due to buoyancy
h	Enthalpy
\vec{J}_i	Diffusion flux of species i
k	Thermal conductivity
M	Mach number
Mw	Molecular Weight
p	Pressure
Pr	Prandtl number
Q	Volumetric flow rate
R_i	Rate of production of species i
S	Source term
Sc	Schmidt number
T	Temperature
u_j	Velocity magnitude in direction of x_j
$ec{v}$	Velocity vector
V	Room volume
Y_{i}	Mass fraction of species i
x, y, z	Cartesian co-ordinate components

Greek Letters

Boundary Layer thickness δ Differential ₹ Stress tensor Turbulent Prandtl number σ Turbulence dissipation rate ε Dynamic viscosity μ Density ρ ∇ Gradient Thermal expansion coefficient β

Superscripts and Subscripts

Mean property Fluctuating component of any property b Buoyancy Counter i Indicates two different Cartesian coordinates ij Turbulent kinetic energy \mathbf{k} mass m point node property p t Turbulent quantity Wall property W Dynamic viscosity μ