

Study of Subclinical Hypothyroidism in Type 2 Diabetes Mellitus among Egyptian Women

Thesis

Submitted for Partial Fulfillment of the M.D. Degree in Internal Medicine

By

Basim Morad Mostafa

(Master Degree Internal Medicine)

Under Supervision of

Prof. Dr/ Hussein Abd ElHay ElOraby

Professor of Internal Medicine & Endocrinology Faculty of Medicine - Ain Shams University

Prof. Dr/ Mohamed Reda Halawa

Professor of Internal Medicine & Endocrinology Faculty of Medicine - Ain Shams University

Dr/ Mona Mohamed Abd ElSalam

Assistant Professor of Internal Medicine & Endocrinology Faculty of Medicine - Ain Shams University

Dr/ Rania Sayed Abd ElBaky

Assistant Professor of Internal Medicine & Endocrinology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2013

دراسة نقص إفراز الغدة الدرقية التحت إكلينيكي في مرضى السكر من النوع الثاني في الإناث بمصر

رسالة توطئة للحصول على درجة الدكتوراة في الباطنة العامة

مقدمة من

الطبيب/ باسم مراد مصطفى

ماجستير أمراض الباطنة - كلية الطب- جامعة عين شمس

تحت إشراف

أ. د/ حسين عبد الحي العرابي

أستاذ الأمراض الباطنة والغدد الصماء والأيض كلية الطب – جامعة عين شمس

أ. د/ محمد رضا حلاوه أستاذ الأمراض الباطنة والغدد الصماء والأيض كلية الطب – جامعة عين شمس

د/ منى محمد عبد السلام أستاذ مساعد الأمراض الباطنة والغدد الصماء والأيض كلية الطب – جامعة عين شمس

د/ رانيا سيد عبد الباقى أستاذ مساعد الأمراض الباطنة والغدد الصماء والأيض كلية الطب – جامعة عين شمس

کلیـــة الطب جامعة عین شمس ۲۰۱۳

List of Contents

	Page
Acknowledgement	I
List of abbreviations	II
List of tables	III
List of figures	
Introduction	1
Aim of the Work	
Review of Literature:	
I - The Thyroid Gland	4
II- Thyroid Gland Disorders	
III- Diabetes Mellitus	
IV- Thyroid-Diabetes: Interrelationship	
Subjects and Methods	. 92
Results	
Discussion	
Summary and Conclusion	
Recommendations	
References	
Arabic summary	

Acknowledgement

There are so many routes in life, and it is the will of **God** the almighty that guides us to the proper routes and the right decisions, it is the will of God also that surrounds us with the right people to back us up and make our lives worth living it...

I am honored and delighted to express my deep thanks to **Prof. Hussein Abd El-Hay El-Oraby,** Professor of Internal Medicine & Endocrinology, Faculty of Medicine, Ain Shams University, for all what he did and still doing, for his professional leadership, scientific directives, inspiring guidance, kind attention, continuous support, wise confidence, unconditional patience, and above all his admirable capability of removing the obstacles and lighting up the shadows of depression by rays of hope.

I am very thankful to **Prof. Mohamed Reda Halawa**, Professor of Internal Medicine & Endocrinology, Faculty of Medicine, Ain Shams University, for his supervision, encouragement and confident words which eliminated all my residual stress-generated doubts.

I would like to confirm my gratefulness to **Dr. Mona Mohamed Abd El-Salam**, Assistant professor of Internal Medicine
& Endocrinology, Faculty of Medicine, Ain Shams University, for
her valuable time, up-close follow-up, constructive feedback and
several enthusiastic advices throughout the entire study, and also
for her role in polishing my skills in arranging and presenting my
work.

Special thanks to **Dr. Rania Sayed Abd El-Baky**, Assistant professor of Internal Medicine & Endocrinology, Faculty of Medicine, Ain Shams University, for her sincere support during the clinical study of this thesis.

Finally, I would like to express my gratitude to the patients who participated in this work and to my family for their support.

List of Abbreviations

AACE	American association of clinical endocrinologists
2h	2 hour
2h PG	2 hours plasma glucose
ADA	American diabetic association
ATA	American thyroid association
ATP	Adenosine triphosplate
BMI	Body mass index
c- DNA	C- form DNA
Ca+2	Calcium
CHD	Cornary heart disease
CNS	Centeral nervous system
Co2	Corbar dioxide
CRP	C- reactive protein
D	Day
DCCT	Diabetes control and complication trial
DM	Diabetes mellitus
DNA	deoxyribonucleic acid
ELISA	Enzyme linked immuno- sorbent assay
FFA	Free fatty acid
FMV	First morning viod
FPG	Fasting plasma glucose
FT4	Free thyoxine
G	Grams
G6PD	Glucose 6 phosphate dehydrogenase
GCT	Glucose challenge test
GDM	Gestational diabetes mellitus
GFR	Glomerare fitteration rate
GH	Growth harmone
GIT	Gastrointeslinal tract
GLUT2	Glucose Transport 2
HbA1C	Hemoglobin A1C (Glycosylated hemoglobin)
HDL	High density lipoprotein cholesterol

HNF-1	Hepatocyte nuclear factor 1
HPA	Hypothalamic pituitary adrenal axis
HPTA	Hypothalamic Pituitary thyroid axis
IDDM	Insulin dependent diabetes mellitus
IFG	Impaired fastirg glucose
IgG	Immunoglobulin –G
IGT	Impaired glucose tolerance
IL-1	Interleukin-1
K+	Potassium
LDL	Low density lipoprotein cholesterol
L-T4	Levothyroxine
Mg	Milligram
Mg/dl	Milligram/ deciliter
MIu/L	Mili- international unit/liter
Mmol/l	Millimol/ liter
MODY	Maturity onset diabetes of the young
mRNA	Messanger ribonucleic acid
Na+	Sodium
NE	Norepinephrine
NGSP	National glycohemeglobin standardization
	program
NHANES	National health and nutrition examination
	nutrition
NIDDM	Non-insulin dependent diabetes mellitus
NIS	Sodium/iodide syntransporter
NPY	Neuropeptide Y
NTI	Non- thyroidal illness
O2	Oxygen
OGTT	Oral glucose tolerance test
PTU	Proply-thiouracil
PVN	Paraventicular nucleus
rT ₃	Reverse T ₃
SPSS	Program for special science
SS	Somatostatin
STZ	Streptozotocin

T ₃	Triodothyronine
T_4	Thyroxine
TBG	Thyroxine binding globuline
Tg	Thyroglobulin
TH	Thyroid hormone
TMAB	Thyroid microsomel Antibodes
TNF	Tissue necrosis factor
TPO	Thyroid poroxidase
TRE	Thyroid hormone responsive element
TRH	Thyrotropin releasing hormone
TSH	Thyroid stimulating hormone
TSI	Thyroid stimulating immunoglobulin
US	United states
VIP	Vasoactive intestinal peptide
WHO	World health organization
Yrs	Years

List of tables

Page
Text tables:
Table 1: Recommendations of eight organizations regarding
screening of asymptomatic adults for thyroid
dysfunction
Table 2: Categories of increased risk for diabetes
Table 3: Criteria for the diagnosis of diabetes
Table 4: Diagnosis of GDM with a 100-g or 75-g glucose
load
Results tables:
Table 1: Descriptive data of studied cases and controls
Table 2: Comparison between studied cases and control as
regards different parameters using t-test110
Table 3: Comparison regarding urine albumin creatinine ratio
in studied groups using Chi-square test112
Table 4: Comparison of thyroid parameters among different
stages of diabetic nephropathy in group I using
ANOVA test114
Table 5: Comparison regarding Ultrasensitive CRP in studied
groups using Chi-square test115
Table 6: Comparison of thyroid parameters among different
values of ultrasensitive CRP (Low risk, medium risk
and high risk) using ANOVA test117
Table 7: Comparison regarding antithyroid peroxidase in all
studied groups using Chi-square test118
Table 8: Comparison regarding thyroid volume in all studied
groups using Chi-square test119
Table 9: Comparison between cases and control groups
regarding prevalence of subclinical and clinical
hypo-thyroidism using Chi-square test120
Table 10: Correlation between FT4 and all other parameters
in group I (diabetic patients) using Pearson
correlation test
Table 11: Correlation between FT4 and all other parameters
in group II (Control) using Pearson correlation test122

List of tables (Cont.) Page

Table 12: Correlation between TSH and all other parameters	
in group I (diabetic patients) cases using Pearson	
correlation test	123
Table 13: Correlation between TSH and all other parameters	
in group II (control) using Pearson correlation test	125
Table 14: Correlation between ultrasensitive CRP and all	
other parameters in group groupI (diabetic patients) using	
Pearson correlation test	126
Table 15: Correlation between ultrasensitive CRP and all	
other parameters in group II (control) using Pearson	
correlation test	128
Table 16: Correlation between antithyroid peroxidase	
antibodies and all other parameters in group I	
(diabetic patients) using Pearson correlation test	129
Table 17: Correlation between antithyroid peroxidase	
antibodies and all other parameters in groupII	
(control) using Pearson correlation test	130
Table 18: Correlation between thyroid volume and all other	
parameters in group I(diabetic patients) using	
Pearson correlation test	131
Table 19: Correlation between thyroid volume and all other	
parameters in group II (control)using Pearson	
correlation test	132

List of figures

	Page
<u>Text figures</u> :	
Figure 1: Cells of thyroid gland	7
Results figures:	
Figure 1: Comparison regarding thyroid function in studied groups showing group I (diabetic patients) has higher TSH but lower FT ₄ than group II (controls)1	.11
Figure 2: Comparison regarding urine albumin creatinine ratio in studied groups	
Figure 3: Comparison regarding Ultrasensitive CRP in studied groups	16
Figure 4: Comparison regarding antithyroid peroxidase in all studied groups	
Figure 5: Comparison regarding thyroid volume in all studied groups	
Figure 6: Correlation between FT4 and cholesterol in group I (diabetic patients)	21
Figure 7: Correlation between FT4 and HDL in group II (Control)	
Figure 8: Correlation between TSH and FBS in group I (diabetic patients)	
Figure 9: Correlation between TSH and TPO in group I (diabetic patients)	
Figure 10: Correlation between HbA ₁ C and US CRP in group I (diabetic patients)	
Figure 11: Correlation between US CRP and Cholesterol in group I (diabetic patients)1	
Figure 12: Correlation between US CRP and LDL in group I (diabetic patients)	
Figure 13: Correlation between TPO and TSH in group I(diabetic patients).	

INTRODUCTION

Thyroid disease is common in the general population, and the prevalence increases with age. The assessment of thyroid function by modern assays is both reliable and inexpensive. Screening for thyroid dysfunction is indicated in certain high-risk groups, such as neonates and the elderly (*Radaideh et al.*, 2004).

Hypothyroidism is by far the most common thyroid disorder in the adult population and is more common in older women. It is usually autoimmune in origin (*Gopinath et al.*, 2008).

Subclinical hypothyroidism is defined as an asymptomatic state characterized by a normal serum freelevel and elevated thyroxine serum concentration thyrotropin (Helfand and Redfern, *1998*). Generally, subclinical hypothyroidism is more common in females and is associated with anti-thyroid antibodies (Cooper, 2001). Several epidemiological studies have shown that subclinical hypothyroidism may be an independent risk for cardiovascular disease (Biondi et al., 2002 and Walsh et al., 2005).

Patients with Type 2 diabetes have a risk of death from cardiovascular causes that is two to six times greater than that of persons without diabetes (*Gu et al*, 1999).

A number of reports have indicated a higher than normal prevalence of thyroid disorders in type 2 diabetic patients compared with the normal population, with hypothyroidism being the most common disorder (*Smithson*, 1998 and Radaideh et al., 2004).

Subclinical thyroid dysfunction is associated with a poor lipid profile and cardiac dysfunction. Patients with Type 2 diabetes suffer from a greater risk of vascular disease, often in association with dyslipidemia. Thyroid dysfunction might either contribute to these factors or make them worse (*El-Nobre et al.*, 2002). Subclinical hypothyroidism may be an independent risk factor of cardiovascular events in Type 2 diabetic patients (*Chen et al.*, 2007).

Although there is a recognized association between thyroid disease and diabetes mellitus, there is no definite answer as to whether screening for subclinical hypothyroidism is necessary in patients with type 2 diabetes.

AIM OF THE WORK

To estimate the prevalence of subclinical hypothyroidism and thyroid antibodies in Type 2 diabetic Egyptian women in comparison to normal Egyptian women.

THE THYROID GLAND

The thyroid gland is the largest organ specialized for endocrine function in the human body. The major function of the thyroid follicular cells is to secrete a sufficient amount of thyroid hormones; primarily tetraiodothyronine (T_4) , and a lesser quantity of triiodothyronine (T_3) . Thyroid hormones promote normal growth and development and regulate a number of homeostatic functions, including energy and heat production. In addition, the parafollicular cells of the human thyroid gland secrete calcitonin, which is important in calcium homeostasis (*Greenspan*, 2004).

The Secretory Unit - The Follicle

Under the middle layer of deep cervical fascia, the thyroid has an inner true capsule, which is thin and adheres closely to the gland. Extensions of this capsule within the substance of the gland form numerous septae, which divide it into lobes and lobules. The lobules are composed of follicles, the structural units of the gland, consisting of a layer of simple epithelium enclosing a colloid-filled cavity. This colloid contains an iodinated glycoprotein, iodothyroglobulin, a precursor of thyroid hormones. Follicles vary in size, depending upon the degree of distention, and they are surrounded by dense plexuses of fenestrated capillaries, lymphatic vessels and sympathetic nerves (*Oertel and Oertel*, 2000).