Fanconi anemia: A paradigm of the Molecular detection of common mutations in Egyptian Fanconi anemia patients

A Thesis

As requirement for PhD degree of Science in **Biochemistry**

Submitted by

Rehab Mostafa Mohamed Mosaad (M.Sc.)

Research Assistant

Department of Molecular Genetics and Enzymology Division of Human Genetics and Genome Research National Research Centre

Under the supervision of

Prof. of Biochemistry Faculty of Science Ain Shams University

Prof. Dr. Ahmed Mohamed Salem Prof. Dr. Hala Al-Tabei Al-Bassyouni **Prof. of Clinical Genetics National Research Centre**

> Prof. Dr. Waheba Ahmed Zarouk **Prof. of Human Genetics National Research Centre**

Dr. Ahmed Abd-El Aziz Said **Assistant Prof. of Biochemistry Faculty of Science Ain Shams University**

Biochemistry Department Faculty of Science Ain Shams University 2013

I declare that this thesis has been composed by my self and the work therein has not been submitted for a degree at this or any other university.

Rehab Mostafa Mohamed Mosaad

Contents	ge
Abstract	I
Acknowledgement	II
List of Abbreviations	III
List of Figures	V
List of Tables	VII
Introduction and Aim of the Work1. Review of Literature	. 1
1.1. Fanconi anemia	2
1.1.1 Definition	2
1.1.2 Incidence and prevalence	2
1.1.3. Clinical features	3
1.1.3.1. Hematological aspects	3
1.1.3.2. Non hematological clinical aspects	5
1.1.3.3. Cancer predisposition	10
1.1.4. Cellular phenotype ₌	11
1.1.4.1. Chromosome breakage and chromosome Aberrations	13
1.1.4.2. Crosslinker sensitivity	15
1.1.4.3. Cell cycle disturbance	16
1.1.4.4. Oxygen Sensitivity	17
1.1.4.5. Deregulated apoptosis	19
1.1.4. 6. RAD51 foci formation	19
1.1.5. Cytogenetic abnormalities	20
1.1.6. Cancer development	23
1.1.7. Differential diagnosis	24

1.1.8. Molecular phenotype		
1.1.8.1. Background	24	
1.1.8.2. The FA/BRCA biological pathway	27	
1.1.8.3. The Fanconi Anemia pathway and Homologous Recompination proteins (HR)	39	
1.1.8.4. The Fanconi Anemia pathway and Translesion synthesis protein (TLS)	40	
1.1.8.5.The Fanconi Anemia pathway, Oxidative Stress, Cytokine Sensitivity	40	
1.1.8.6. Fanconi anemia genes	43	
1.1.9. Genotype - phenotype correlation in Fanconi anemia	58	
1.1.10. Treatment and Manifestation	61	
1.1.10.1. Androgen and corticosteroides	62	
1.1.10.2. Hematopoietic growth factor	63	
1.1.10.3.Hematopoietic Stem cell Transplantation.(HSCT)	63	
1.1.10.4. Cancer treatment	64	
1.1.10.5. Therapies Under Investigation	64	
2. Materials and Methods	66	
2.1. Subjects	66	
2.2. Methods	66	
2.2.1. Clinical evaluation	66	
2.2.2. Cytogenetic studies	67	
2.2.3. Molecular studies	67	
2.2.3.1. DNA extraction	67	
2.2.3.2. Detection of missense mutation 2574C→ G (S858R) in exon 27 of FANCA gene	70	

2.2.3.3. Detection of mutation 3788 – 3790del in exon 38 of FANCA gene	74
2.2.3.4. Detection of mutations in exon 34 and exon 43 of FANCA gene	79
2.2.3.5. Single Stranded Conformational Polymorphism (SSCP)	72
2.2.3.6. DNA Sequencing	81
2.2.3.7. Detection of intragenic deletion of exon 27 in FANCA gene	81
3. Results	85
3.1. Clinical data	85
3.2. Molecular Data	87
3.2.1 Patients had homozygous deletion mutation of exon 27 in the FANCA gene	87
3.2.2 Result of 2574C \rightarrow G (S858R) mutation in exon 27 of the FANCA gene	88
3.2.3 Results of 3788-3790del mutation in exon 38 of the FANCA gene	89
3.2.4 Results of mutations screening in exon 34 and exon 43 of the FANCA gene	90
3.3 Genotype-phenotype correlations	91
3.3.1 The anthrometical, clinical, hematological and cytogenetic data of patients with the homozygous deletion in exon 27 of the FANCA gene	91
4. Discussion	117
Summary	138
References	140
Arabic Summary	

Abstract

Fanconi anemia: A paradigm of the Molecular detection of common mutations in Egyptian Fanconi anemia patients.

Rehab Mostafa Mohamed Mosaad

Introduction: FA-A is the most frequent complementation group representing approximately two-thirds of the FA patients in the majority of countries. Aim of the work: screening the most common mutations in exons 27, 34, 38 and 43 of FANCA gene in the Egyptian Fanconi anemia patients and Phenotype /genotype correlation to evaluate the severity of the disease with the gene mutations. Subjects and Methods: Thirty Egyptian FA cases, their age range from 5 to 15 years, descending from unrelated consanguineous pedigrees were recruited from the outpatient clinic of the Clinical Genetics department, NRC. Control group was 10 unrelated matching age and sex with no family history of Fanconi anemia. All patients had positive chromosomal breakage studies with diepoxybutane (DEB) confirming the diagnosis of FA. Amplification of FANCA gene exons, Restriction Analysis, DNA sequencing for patients and controls was done. Results: 20 % (6/30) of our patients had homozygous deletion of exon 27 of the FANCA gene, this detected deletion needs more studies to define the boundaries; these patients presented with severe phenotype, 67% were born with low birth weight. All patients had cafe' au lait spots, hyper pigmentation, and 83% had skeletal abnormalities. Moreover, chromosomal breakage (DEB test) in this group was with an average of 11.5 break/ cell. No 2574C> G (S858R) mutation in exon 27 or c.3788_3790 del TCT mutation in exon 38 in the FANCA gene wsa detected in our studied patients. Moreover, no new mutations were detected in exons 34 and 43 of the FANCA gene. This is the first step in defining the mutation spectrum of FA in Egyptian patients.

Keywords: Fanconi anemia, FANCA gene, DEB, 3788-3790del mutation.

ACKNOWLEDGEMENT

My sincere thanks to, *Ahmed Mohamed Salem*, professor of Biochemistry, Faculty of Science, Ain Shams University, for his expert guidance, help, supervision and revision.

I would like to express my great thanks and deepest appreciation to *Prof. Dr. Hala T. El- Bassyouni*, professor of Clinical Genetics, National Research Centre for her kind supervision, precious guidance, helpful instructions, and powerful support.

My grateful acknowledge for, *Prof. Dr. Waheba Ahmed Zarouk*, professor of Human Genetics and head of the molecular genetics and enzymology department, National Research Centre, For her valuable guidance, support, invaluable advices, and great help under her continuous supervision to finish this work.

My profound and sincere thanks to *Prof. Dr. Ahmed Abd-El Aziz Said*, Assistant professor of Biochemistry, Faculty of Science, Ain Shams University, for his great support, abounding patience, efforts, and the time he spent in reviewing the thesis.

A word of thank to *Prof. Dr. Ghada El-Kammah*, professor of Clinical Genetics, National Research Centre, for help in collecting the samples and interpreting clinical data of the patients.

I am indebted to *Prof. Dr. Maha Mohammed Eid* Assistant professor of cytogenetic, National Research Centre, for her help in interpreting cytogenetic data of the patients.

List of Abbreviations

AA : Aplastice Anemia

AIDs : Antibody Immunodeficiency Syndrome

AMD : Amplification Mismatch Detection

AML : Acutemyeloid Leukemia

Arg : Arginine **bp** : Base pair

BMT : Bone Marrow Transplantation

BMF : Bone Marrow FailureBSA : Bovine serum albuminCAB : Congenital Abnormality

CDDP : Cisplatin

cM : Cent Morgan

CNS : Central Nervous Systen

Cod : Codon

CTD : C-terminal Domain

CU+ : Reduced state of copper ionsCVS : Chorionic Villi Sampling

dATP : Deoxyadenosine 5'-triphosphatedCTP : Deoxycytidine 5'-triphosphate

DEB : DiepoxybutanDf : Dilution factor

DGGE : Denaturing gradient gel electrophoresis

dGTP : Deoxyguanosine 5'-triphosphate

DMSO: Dimethylsulfoxide

dNTP's : Deoxynucleoside 5'-triphosphate

DTT : Dithiothreitol

dTTP : Deoxythimidine 5'-triphosphatedUTP : Deoxyuridine 5'-triphosphate

EDC : 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

hydrochloride

EDTA : Ethylene diamine tetra acetic acid

ER : Endoplasmic Reticulum

ERGIC Endoplasmic Reticulum Golgi Intermediate

Compartment.

EVI1 : Ecotropic Virus Integration Site 1 gene

FA : Fanconi Anemia

FA-A Fanconi Anemia complementation group A **G-CSF** : Granulocyte-Colony Stimulating Factor

Hb : Hemoglobin**HD** : Helical Domain

HDR : Homology-directed DNA Repair

HNSCC: Head and Neck Squamous Cell Carcinoma

HR : Homologous Recombinase

HSCT : Hematopoitic Stem Cell Transplatation

ICL : Interstrand DNA crosslinking

IFAR : International Fanconi Anemia Registry.

IgG : Immunoglobulin G
IR : Ionizing Radiation

LC3 : Light Chain 3 kb : Kilo base

KDa : Kilo Dalton aminacid

MAP1 : Microtubule-associated Protien

Mb : Mega bite

MCA : Multiple Congenital AnomaliesMDS : Myelodysplastic Syndrome

MMC : Mitomycin C

mRNA : messenger Ribonucleic Acid
 NHEJ : Nonhomologous End Joining
 N-Linked : Linked to Nitrogen terminal
 NLS : Nuclear Localization Signals

NM : Nitrogen Mustard OD : Optical density

O-linked: Linked to terminal oxygen PCR: Polymerase chain reaction

pg : Picogram

PHA : Phytohemagglutan APHD : Plant Homeodomain

PL : Phospholipids.PT : Prothrombin Time

RFLP: Restriction fragment length polymorphism

ROS : Reactive Oxygen Sensitive.
 SDS : Sodium Dodecyle Sulphate
 SSA : Single Strand Annealing
 SCC : Squamous Cell Carcinomas
 SCE : Sister Chromatide Exchange

SSCP : Single-strand confirmation polymorphism

TAE : Tris acetate-EDTA

TAR : Thrombocytopenia-absent radii

TBE : Tris borate-EDTA

TCT: Thrombin clotting time

TD : Tower Domain TE : Tris-EDTA

TLS : Translesion Synthesis Protien **TNF-a** : Tumor Necrosis Factor -a

Tris : Tris (hydroxymethyl) aminomethane **UBE2T** : Ubiquitin Conjugating Enzyme E2.

UV : Ultraviolet

List of Figures

Page

Fig. (1)	:	The FA/BRCA biological pathway	26
Fig. (2)	:	Ubiquitylation in response to interstrand crosslinks, highlighting Fanconi anemia proteins and the associated factors necessary for repair.	34
Fig. (3)	•	Schematic of the Fanconi anemia DNA repair pathway	38
Fig. (4)	:	Schematic representation of the thirteen human Fanconi anemia proteins	48
Fig. (5)	:	Marked increase in the chromosomal breakage induced by DEB in FA patients with the characteristic isochromatid exchange.	106
Fig. (6)	:	Mild increase in the chromosomal breakage induced by DEB in FA patients with the characteristic isochromatid exchange.	107
Fig. (7)	:	Analysis of the amplified DNA products of homozygous intrgenic deletion of Exon 27 mutation in FANCA gene of Egyptian FA patients.	108
Fig. (8)	:	Analysis of the amplified DNA products of 2574C → G (S858R) mutation in exon 27 in FANCA gene.	109
Fig. (9)	:	Analysis of the amplified DNA products of 3788-3790del mutation in exon 38 in FANCA gene.	110

Page

Fig.(10)	••	Analysis of the amplified DNA products of exon 34 in FANCA gene	111
Fig.(11)	••	Analysis of the amplified DNA products of exon 43 in FANCA gene	112
Fig.(12)		SSCP analysis of the amplified productsof exon 34 of FANCA gene	113
Fig.(13)	:	SSCP analysis of the amplified products of exon 43 of FANCA gene	114
Fig (14)	•	Partial sequence of FANCA gene exon 34 PCR fragment, showing normal sequencesing forward primer.	115
Fig (15)	•	Partial sequence of FANCA gene exon 43 PCR fragment, showing normal sequencesing forward primer.	116

List of Tables

Page

Table (1) :	Frequency of abnormalities in Fanconi anaemia.	5
Table (2) :	Congenital malformations in patients in the International Fanconi Anemia Registry (IFAR).	8- 9
Table (3) :	Thirteen complementation groups of Fanconi Anemia	41- 42
Table (4) :	The sequence of PCR primers	84
Table (5) :	Anthropometric data of patients.	93-95
Table (6) :	Clincal data of patients.	96-99
Table (7) :	Hematological and cytogenetic data of patients.	100-101
Table (8) :	Anthropometric data of patients with homozygous intragenic exon 27 deletion mutation in the FANCA gene.	102
Table (9) :	Clincal data of patients with homozygous intragenic exon 27 deletion mutation in the FANCA gene	103
Table (10) :	Hematological and cytogenetic data of patients with homozygous intragenic exon 27 deletion mutation in the FANCA gene	104
Table (11):	Molecular data of the patients (1-6).	105

Introduction

Fanconi anemia (FA; MIM 227650) is a genetically heterogeneous chromosomal instability syndrome associated with multiple congenital abnormalities, progressive pancytopenia, and predisposition to both hematologic malignancies and solid tumors (*Morgan et al.*, 2005).

It is a very rare (1–5 per million) autosomal recessive or X-linked (FA-B group) disease (*Callen et al., 2005*; *Kutler and Auerbach 2004*). FAis caused by a genetic defect in a cluster of proteins responsible for DNA repair (*D'Andrea, 2010*). Fanconi anemia cells are hypersensitive to DNA cross-linking agents, such as diepoxybutane (DEB) and this provides a valuable laboratory test to support the clinical diagnosis (*Auerbach, 2009*).

Fanconi anemia is caused by biallelic mutations in one of at least 15 FA genes that are responsible for the known FA complementation groups (A, B, C, D1 [BRCA2], D2, E, F, G, I, J [BRIP1], L, M, N [PALB2], O [RAD51C], and P [SLX4]) (Hucl and Gallmeier, 2011). FA-A is the most frequent complementation group representing approximately two-thirds of the patients in the majority of countries accounting to 60-66 %. (Kennedy and D'Andrea, 2005).

To our knowledge, Fanconi anemia mutations have not yet been investigated in the Egyptian population, characterized by a heterogeneous ethnic background and a high rate of consanguinity.

Aim of this work:

The aim of the present work was screening of the most common mutations of FANCA gene in the Egyptian Fanconi anemia patients and Phenotype /genotype correlation to evaluate the severity of the disease with the gene mutations.

1.1. Fanconi anemia

1.1.1. Definition

FA (MIM 227650) is a rare genetic disease characterized by childhood-onset bone marrow failure (aplastic anemia), cancer/leukemia susceptibility, multiple congenital abnormalities and cellular hypersensitivity to interstrand DNA crosslinking (ICL) agents, such as MMC, diepoxybutane (DEB), melphalan, cisplatin and cyclophosphamide (*Wang*, 2007). It is an autosomal recessive disease (all complementation groups except FA-B group) or X-linked (FA-B group) (*Taniguchi*, 2009).

FA is a genetically heterogeneous disease caused by biallelic mutations in one of at least 15 FA genes which are responsible for the known FA complementation groups (A, B, C, D1 [BRCA2], D2, E, F, G, I, J [BRIP1], L, M, N [PALB2], O [RAD51C], and P [SLX4]). The latter two genes are still thought of as tentative as they do not fall within a very easily characterized compartment biologically and have very few representative individuals (Hucl and Gallmeier, 2011).

1.1.2. Incidence and Prevalence

FA is a very rare disease (1–5 per million) and its heterozygous carrier frequency is estimated to be 1/300 (*Auerbach et al., 2001*). In some populations (Ashkenazi Jewish, Spanish Gypsy, and black South African) the carrier frequency of FA is estimated at around 1:100 (*Kutler and Auerbach 2004 & Callen et al., 2005& Morgan et al., 2005*). The median age at diagnosis is 6.5 years for boys and 8 years for girls, but the age at diagnosis ranges from 0 to 48 years. From 1981 to 1990, the median age at death was only 19 years; by 2000 the median age had reached 30 years, probably because of improved medical care (*Alter, 2003b*).