

Ain Shams University Faculty of Engineering Structural Engineering Department

IMPROVING PUNCHING SHEAR BEHAVIOR OF FLAT RC SLABS

By

Eng. Hamada Ali Hamada Mohamed

B.Sc. 2009, Civil Engineering, Structural Engineering Faculty of Engineering, October 6 University A Thesis

Submitted in partial fulfillment for the requirements of the Degree of Master of Science in Structural Engineering

Supervised by

Prof Dr. Omar Ali Moussa EL-Nawawy

Professor of R.C. Structures Faculty of Engineering Ain Shams University

Prof Dr. Ayman Hussein Hosny

Professor of R.C. Structures Faculty of Engineering Ain Shams University

Dr. Eiad Hafiz Zahran

Lecturer of Structural Engineering
Higher Institute of Engineering and Technology
(New Cairo Academy)

Faculty of Engineering Ain Shams University Cairo-2015

بسم الله الرحمن الرحيم

STATEMENT

This thesis is submitted to Ain shams University, Cairo,

Egypt, for the degree of Master of Science in Civil

Engineering (Structural).

The work included in this thesis was carried out by the

author in the Department of Structural Engineering, Faculty of

Engineering, Ain Shams University, from 2013 to 2015

No part of this thesis has been submitted for a degree or

a qualification to any other University or Institution.

Name

: Hamada Ali Hamada Mohamed

Date

: / / 2015

Signature

i

Ain Shams University Faculty of Engineering Structural Engineering Department

Approval Sheet

: Hamada Ali Hamada Mohamed

Name

Title of thesis: IMPROVING PUNCHING SHEAR BEHAVIOR OF FLAT RC SLABS Degree : Master of Science in Civil Engineering (Structural) **Examining Committee Signature** Prof Dr. Magdy Kassem Professor of R.C. Structures Cairo University Prof Dr. Ahmed Hassan Ghallab Professor of R.C. Structures Ain Shams University Prof Dr. Omar Ali Moussa EL-Nawawy Professor of R.C. Structures Ain Shams University (Supervisor) **Prof Dr. Ayman Hussein Hosny** Professor of R.C. Structures Ain Shams University (Supervisor)

INFORMATION ABOUT THE RESEARCHER

Name : Hamada Ali Hamada Mohamed

Date of Birth: July 14th, 1987

Place of Birth : Sohag, Egypt

Qualifications: B.Sc. Degree in Civil Engineering

(Structural Engineering) Faculty of Engineering,

October 6 University (2009)

Present Job: Demonstrator at Pyramids Higher Institute for

Engineering and Technology

Signature:

ACKNOWLEDGMENTS

I would like to express my deepest thanks and appreciation to Professor **Dr. Omar Ali Moussa Elnawawy**, for his continuous advice, keen interest, and valuable supervision and for his reviewing of the manuscript.

Profound gratitude and sincere appreciation to Professor **Dr. Ayman Hussein Hosny** for his direct supervision, valuable criticism, his usual and continuous support, and for his reviewing of the manuscript.

I would like to extend sincere thanks and appreciation to my advisor **Dr. Eiad Hafiz Zahran** for providing the guidance necessary to complete this research and for his constant encouragement, support, and friendship.

The experimental work was carried out at the Reinforced Concrete Laboratory, Structural Engineering Department, Ain Shams University. The help of the lab staff in developing work is greatly appreciated.

Finally, I would like to thank deeply my family for their continuous encouragement, overwhelming support, fruitful care, and patience, especially in the difficult times.

Improving Punching Shear Behavior of Flat RC Slabs Master of Science, 2015 Hamada Ali Hamada Department of Structural Engineering, Ain Shams University

ABSTRACT

This work presents a method to improve the punching shear resistance of flat RC slabs that develop cracking at regions between the slab and column. The work examines the effect the punching shear capacity of using glass fiber at slab column interface to enhance. The study consists of an experimental phase and a theoretical study.

The experimental work divides the test specimens into two groups (A & B). The first group, Group (A) includes six specimens of reinforced concrete slabs having a concrete compressive strength (35 MPa). Three of these specimens rest on columns and the other three rest on column capitals.

The second group, Group (B) is similar; however, it has a concrete compressive strength of (17 MPa). Four specimens were loaded until failure and used as reference .Eight specimens were loaded up to 80% and 50% of the failure load. After being unloaded, these eight specimens were strengthened using glass fiber then loaded to failure.

The deflection, cracking, failure modes, strain in steel reinforcement and relationship between load deflection and load-strain were recorded and discussed. Results show that strengthening using GFRP enhanced the shear capacity of the tested specimens. Enhancement was significant for group (A) specimens.

The first group, Group (A) after strengthening by glass fiber it improved resistance about (13%-23%) in specimens rest on columns and it improved resistance about (11%-15%) in the specimens rest on column capitals.

The second group, Group (B) after strengthening by glass fiber decreased the failure about (4.5%-23%) in specimens rest on columns and it improved resistance about (0%-9%) in the specimens rest on column capitals.

In the analytical study, the specimens were modeled using a non liner computer program. Fair agreement was found between the experimental and the theoretical results.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	iv
ABSTRACT	v
TABLE OF CONTENTS	vii
LIST OF FIGURES	xiii
LIST OF TABLES	xviii
CHAPTER 1 : INTRODUCTION	
1.1 General	1
1.2 Objectives and Scope of the Current Research	3
1.3 Thesis Organization	3
CHAPTER 2: LITERATURE REVIEW	
2.1 Introduction	5
2.2 Slab - Column Connections	6
2.3 Concentric Punching Phenomena	6
2.4 Basic Definitions	7
2.4.1 Ductility	7
2.4.2 Stiffness	7
2-4-3 Energy Absorption	8
2.5 Strength of Slab-Column Connections	9
2.6 Composite Materials	9
2.6.1 Introduction	9
2.6.2 Polymer matrix	9
2.6.2.1 Polyester resins	10
2.7.2.2 Epoxy resins	13
2.6.3 Fiber Reinforcements	15
2.6.4 Glass fibers	17

	Table of Contents
2.6.5 Aramid fibers	24
2.6.6 Other organic fibers	25
2.7 Field Applications of Advanced Composite Materia	als 26
2.7.1 Use of FRP as Reinforcement for Concrete	26
Elements.	
2.7.2 Using of FRP as Tendons for Prestressed	27
Concrete Structures.	
2.7.3 Using of FRP for Rehabilitation and	27
Strengthening.	
2.8 Punching Failure in Reinforced Concrete	29
2.9 Enhancing the Punching Shear Strength of Flat Slab	os 33
CHAPTER 3: EXPERIMENTAL STUDY	
3.1 Introduction	47
3.2 Research Plan	47
3.2.1 Objectives	47
3.2.2 Scope	48
3.3 Experimental Program	48
3.4 Specimens	49
3.4.1 Reinforced Concrete Slabs	49
3.4.1.1 Group (A)	52
3.4.1.2 Group (B)	52
3.5 Materials	55
3.5.1 Fine aggregate	55
3.5.2 Coarse aggregate	56
3.5.3 Cement	56
3.5.4 Concrete	57
3.5.5 Concrete Test Results	58
3.5.6 Steel Reinforcement	59
3.5.7 Strengthening Materials	60

	able of Contents
3.6 Concrete Casting and Curing	63
3.7 Slab Testing	66
3.7.1 General Procedure for Control Specimens N	Mixing 67
3.7.2 Standard Compression Specimens	71
CHAPTER 4: EXPERIMENTAL RESULTS	
4.1 Introduction	72
4.2 Test Results of First Group (A)	72
4.2.1 Specimen (S)	74
4.2.1.1 Cracking Pattern	74
4.2.1.2 Deflection	75
4.2.1.3 Strain Measurements in Steel	77
Reinforcement	
4.2.2 Specimen (S80)	78
4.2.2.1 Cracking Pattern	79
4.2.2.2 Deflection	79
4.2.2.3 Strain Measurements in Steel	80
Reinforcement	
4.2.2.4 Strengthening Procedure	82
4.2.3 Specimen (S50)	86
4.2.3.1 Cracking Pattern	87
4.2.3.2 Deflection	88
4.2.3.3 Strain Measurements in Steel	89
Reinforcement	
4.2.3.4 Strengthening Procedure	90
4.2.4 Specimen (SH)	91
4.2.4.1 Cracking Pattern	91
4.2.4.2 Deflection	92
4.2.4.3 Strain Measurements in Steel	94
Reinforcement	

	Table of Contents
4.2.5 Specimen (SH80)	95
4.2.5.1 Cracking Pattern	96
4.2.5.2 Deflection	97
4.2.5.3 Strain Measurements in Steel	98
Reinforcement	
4.2.5.4 Strengthening Procedure	99
4.2.6 Specimen (SH50)	103
4.2.6.1 Cracking Pattern	104
4.2.6.2 Deflection	105
4.2.6.3 Strain Measurements in Steel	106
Reinforcement	
4.2.6.4 Strengthening Procedure.	107
4.3 Test Results of Second Group (B)	108
4.3.1 Specimen (L)	110
4.3.1.1 Cracking Pattern	110
4.3.1.2 Deflection	111
4.3.1.3 Strain Measurements in Steel	113
Reinforcement	
4.3.2 Specimen (L80)	114
4.3.2.1 Cracking Pattern	115
4.3.2.2 Deflection	115
4.3.2.3 Strain Measurements in Steel	116
Reinforcement	
4.3.2.4 Strengthening Procedure	118
4.3.3 Specimen (L50)	119
4.3.3.1 Cracking Pattern	120
4.3.3.2 Deflection	121
4.3.3.3 Strain Measurements in Steel	122
Reinforcement	

	Table of Contents
4.3.3.4 Strengthening Procedure	123
4.3.4 Specimen (LH)	124
4.3.4.1 Cracking Pattern	124
4.3.4.2 Deflection	124
4.3.4.3 Strain Measurements in Steel	127
Reinforcement	127
	128
4.3.5 Specimen (LH80)	
4.3.5.1 Cracking Pattern	129
4.3.5.2 Deflection	130
4.3.5.3 Strain Measurements in Steel	131
Reinforcement	100
4.3.5.4 Strengthening Procedure	132
4.3.6 Specimen (LH50)	133
4.3.6.1 Cracking Pattern	134
4.3.6.2 Deflection	135
4.3.6.3 Strain Measurements in Steel	136
Reinforcement	
4.3.6.4 Strengthening Procedure	137
4.4 Summary of Experimental Results	138
CHAPTER 5: ANALYSIS AND DISCUSSIONS OF	TEST
RESULTS.	
5.1 General	140
5.2 Discussion of Test Observations Group (A)	140
5.2.1 Load - Deflection Characteristics	140
5.2.2 Cracking and Ultimate Loads	142
5.2.3 Shear Stress	144
5.3 Discussion of Test Observations Group (B)	146
5.3.1 Load - Deflection Characteristics	146
5.3.2 Cracking and Ultimate Loads	147

	Table of Contents
5.3.3 Shear Stress	149
5.4 Comparison Between Group (A) and group (B)	151
5.4.1 Load - Deflection Characteristics	151
5.4.2 Cracking and Ultimate loads	152
5.5 Summary	154
CHAPTER 6: ANALYTICAL STUDIES	
6.1 General	156
6.2 Finite Element Model	156
6.2.1 Element Types	156
6.2.1.1 Concrete Element	157
6.2.1.2 Reinforcement Element	158
6.2.2 Material properties	159
6.2.3 Stress-Strain Relationship Concrete	160
6.3 Verification of FEM Using Experimental results	163
CHAPTER 7: CONCLUSION AND RECOMMENDA	TIONS
7.1 Summary	170
7.2 Conclusions	171
7.3 Recommendation for Future Work	172