Bacterial & Fungal Infections Associated with Chronic Hemodialysis and Estimation of Certain Related Cytokines

Thesis

Submitted In Partial Fulfillment for the Degree Of M.D. in Medical Microbiology & Immunology

By

Nermin Hassan Ibrahim M.B., BCH. MSC.

Supervisors

Professor Dr. Mona Mahmoud Ezzat

Professor of medical microbiology and immunology Faculty of medicine- Cairo University

Professor Dr. Amal Shafik Balbaa

Professor of medical microbiology and immunology Faculty of medicine- Cairo University

Professor Dr. Mohamed Gamal El-Deen Saadi

Professor of medicine Faculty of medicine- Cairo University

> Faculty of Medicine Cairo University 2005

Acknowledgment

First and for most I thank ALLAH, the almighty, the most merciful for helping and strengthening me all through this work.

My sincerest gratitude goes to Professor Dr. Mona Mahmoud Ezzat, Professor of Medical Microbiology and Immunology, Faculty of medicine, Cairo University. Her continuous guidance, keen supervision and valuable advice were of great help to me in pursuing my goal.

I owe special thanks to Professor Dr. Amal Shafik Balbaa, Professor of Medical Microbiology and Immunology, Faculty of medicine, Cairo University, for her kind supervision, deep concern and enthusiastic encouragement throughout this work.

I would also like to thank Professor Dr. Mohamed Gamal El-Deen Saadi, Professor of Medicine, Faculty of medicine, Cairo University, for his guidance, support and close supervision all through this study.

I am greatly indebted to Dr. Nadia Hafez Ouda, Lecturer of Medical Microbiology and Immunology, Faculty of medicine, Cairo University, for her help, continuous support and constructive advice.

My thanks also go to Professor Dr. Abd El-Fatah Attia, Professor of Medical Microbiology and Immunology, Faculty of medicine, Cairo University, Professor Dr. Hesham Ezzat, Professor of Medical Microbiology and Immunology, Faculty of medicine, Cairo University, and Assistant Professor Sherouk Khamis, Dr. of Medical Microbiology and Immunology, Faculty of medicine, Cairo University, for all their kind support, help and valuable advice concerning infection control data from the dialysis unit at New Cairo University Teaching Hospital,

I would also like to thank Professor Dr. Nelly Hassan, Professor of Biostatistics department, NCI, Cairo University, for all her kind help in the statistical work.

My deepest and sincerest gratitude also goes to all my Professors and colleagues at the department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, for every help, advice and support that were kindly given.

Last, but not least, I would like to express my love and gratitude to my parents, husband and my children, for their love, support, patience and continuous encouragement.

LIST OF ABRREVIATIONS

AAMI Association for Advancement of Medical Instrumentation

ACTH Adrenocorticotrophin hormone

ALT Alanine amino-transferase

Anti-HCV Hepatitis C virus antibodies

AVF Arteriovenous fistula

AVG Arteriovenous graft

BUN Blood urea nitrogen

CAVHD Continuous arteriovenous hemodialysis

CD Cluster of differentiation

CDC Centers of infectious diseases control

Cfu Colony forming unit

CNS Coagulase negative staphylococci

CRB Catheter related bacteraemia

CRF Chronic renal failure

CRH Corticotrophin releasing hormone

CSF Colony stimulating factor

CTIN Chronic tubulointerstitial nephropathy

CVC Central venous catheter

CVVHD Continuous venovenous hemodialysis

EIA Enzyme Linked Immunoassay

EPA Environmental Protecting Agency

EPO Erythropoietin

ESRD End stage renal disease

FDA US Food and Drug Administration

G-CSF Granulocyte colony stimulating factor

GF Growth factor

GFR Glomerular filtration rate

GISA Glycopeptide intermediate resistant *staph.aureus*

GM-CSF Granulocyte macrophage colony stimulating factor

GRE Glycopeptide resistant *Enterococci*

HBcAg Hepatitis B core antigen

HBeAg Hepatitis B e antigen

HBsAg Hepatitis B surface antigen

HBV Hepatitis B virus

HCFA Health care Financing Administration

HCV Hepatitis C virus

HDV Hepatitis D virus

HGV Hepatitis G virus

HIV Human immunodeficiency virus

HMWK High molecular weight kininogen

HPAA Hypothalamus pituitary adrenal axis

HSFs Hepatocyte stimulating factor

ICE IL-1 converting enzyme

IcIL-1raI Intacellular IL-1 receptor agonist type I

IcIL-1raII Intacellular IL-1 receptor agonist type II

ICU Intensive care unit

IL Interleukin

IL-1ra IL-1 receptor agonist

IL-1RI IL-1 receptor type I

IL-1RII IL-1 receptor type II

IL-1RIII (**IL-1AcP**) IL-1 receptor type III (IL-1 accessory protein)

INF Interferon

LAK Lymphokine activated killer cells

LPS Lipopolysaccharide

LT Lymphotoxin

MCSF Monocyte colony stimulating factor

MHC Major Histocompatibility Complex

MPN Most probable number

MRSA Methicillin resistant *Staph.aureus*

NF-κB Nuclear factor kappa enhancer binding protein

NGF Nerve growth factor

NIH National Institute of Health

NK Natural killer cells

NNIS National Nosocomial Iinfections Surveillance

OD Optical density

PAF Platelet activating factor

PAN Polyacrylonitric membrane

PMMA Polymethyl methoacrylate membrane

PMNL Polymorph nuclear leucocytes

PS Polysulphone membrane

RO Reverse osmosis

RRT Renal replacement therapy

RT-PCR Reverse transcriptase polymerase chain reaction

S.aureus Staphylococcus aureus

S.epidermidis Staphylococcus epidermidis

SCF Stem cell factor

Surveillance and Control of Pathogens of Epidemiological

SCOPE importance

SDA Sabaraud's dextrose agar

SIL-1ra Soluble IL-1 receptor agonist

TACE TNF- α converting enzyme

TGF-\beta Transforming growth factor- β

TGFB Transforming growth factor

Th1 T helper cells 1

The Thelper cells 2

TNF- α Tumor necrosis factor- α

TTV Transfusion transmitted virus

US United States

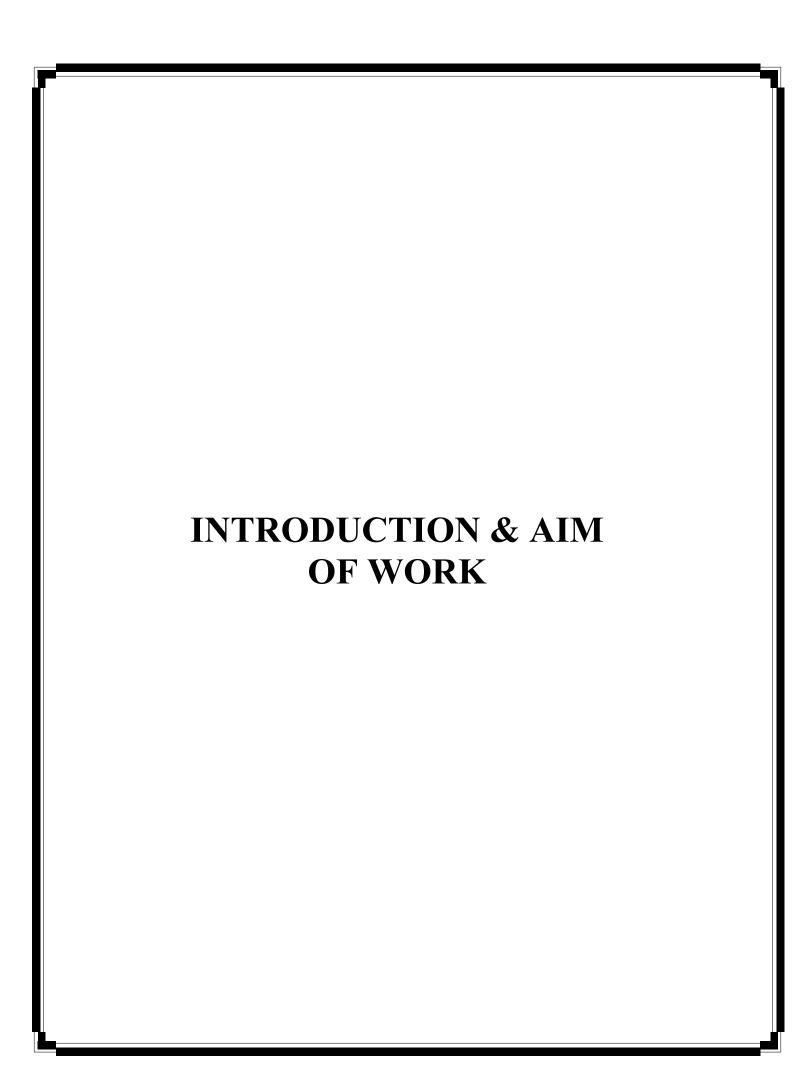
VA Vascular access

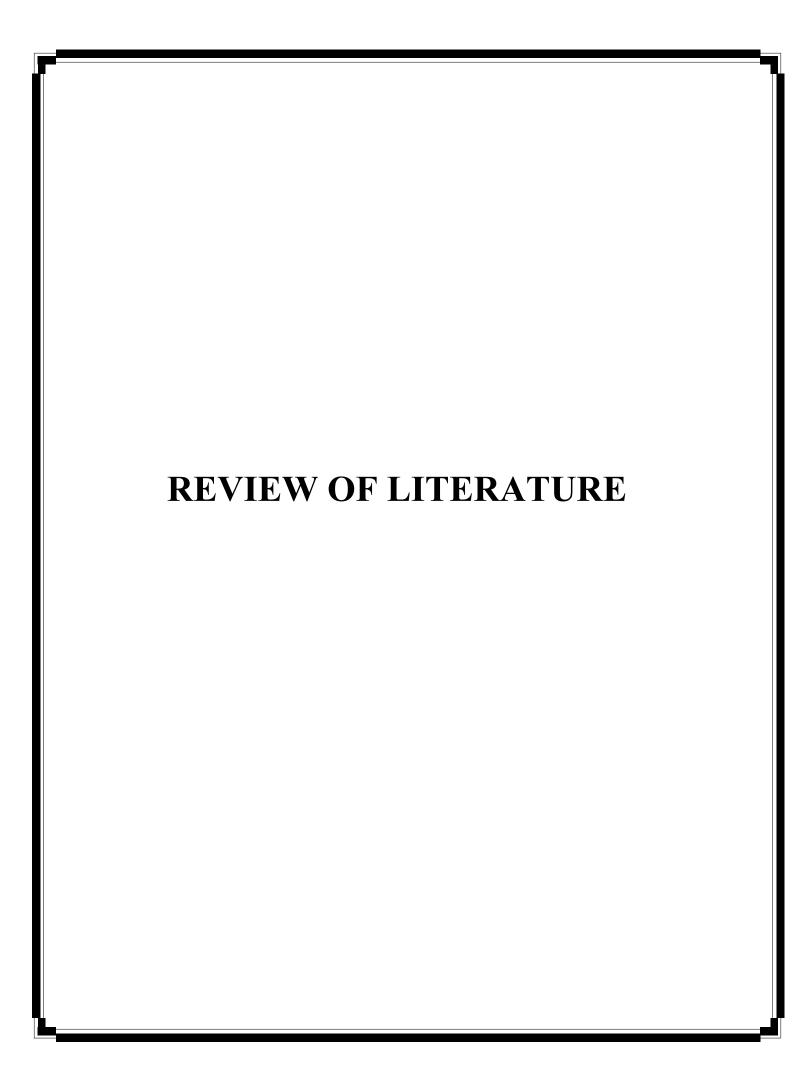
VAI Vascular access infection

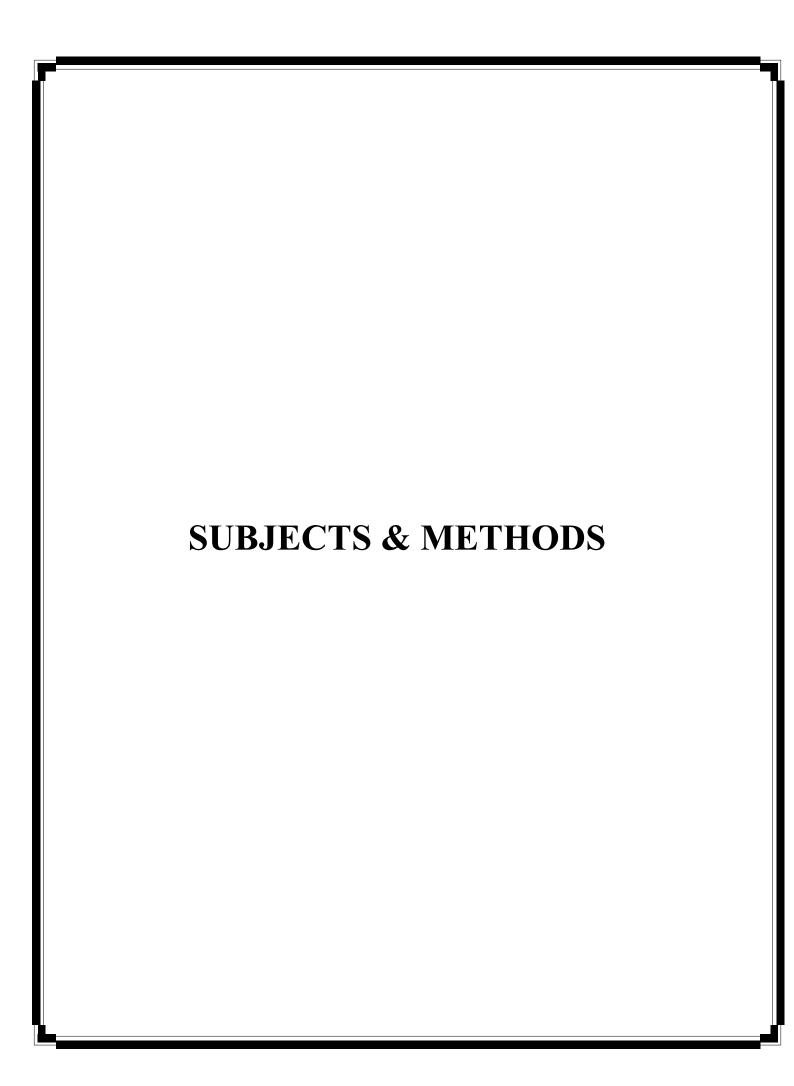
VISA Vancomycin intermediate resistant Staph.aureus

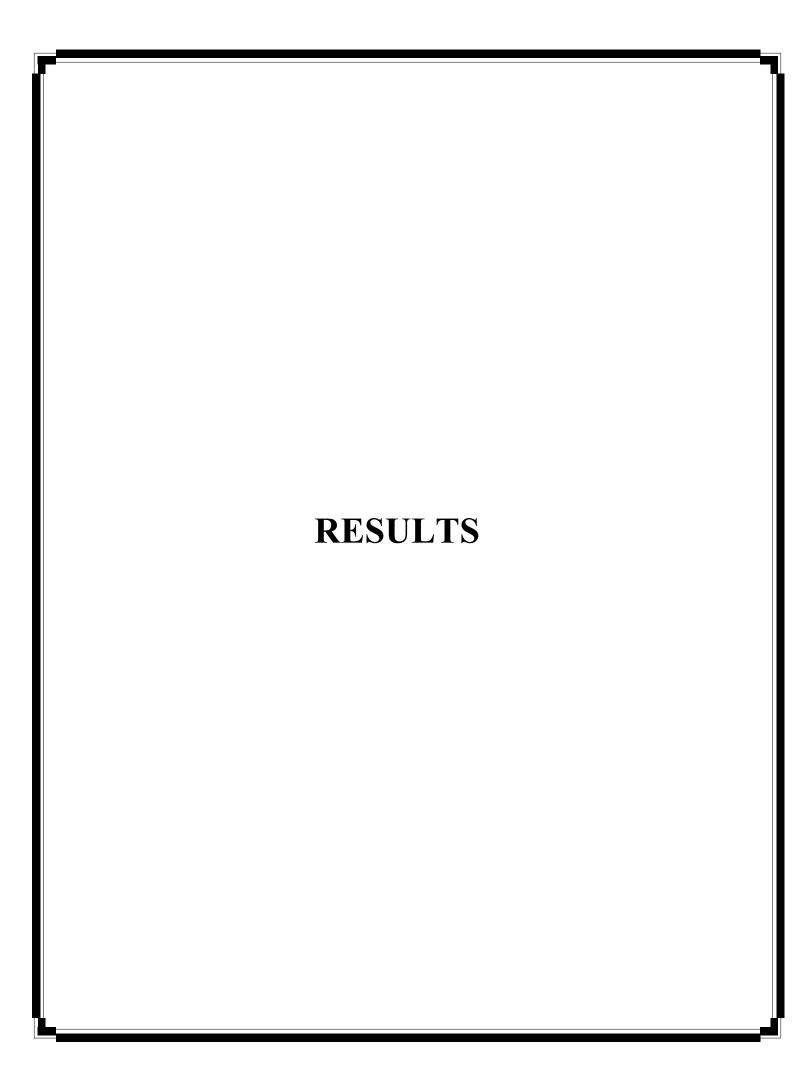
VRE Vancomycin resistant Enterococci

LIST OF FIGURES


Table no.	Title	Page no.
1	Etiology of chronic renal failure in Egypt	9
2	The process of hemodialysis.	15
3	The structure of the dialyzer.	17
4	Vascular access types.	26
5	Cytokines' receptor types.	66
6	The structure of TNF-α.	69
7	The structure of IL-1β.	78
8	Sex distribution among the studied group.	112
9	Age distribution among the studied group.	112
10	Distribution of access type among the studied group.	114
11	Results of blood culture among the studied group.	115
12	Distribution of organisms among the dialysate samples.	120
13	The median values of IL-1 β and TNF- α in relation to fever	124
	in the studied group.	
14	The median values of IL-1 β and TNF- α in relation to	125
	bacteraemia in the studied group.	
15	The median values of IL-1 β and TNF- α of dialysis patients	127
	in relation to normal controls.	
16	96well-microplate after performing the ELISA technique	127
	$(TNF-\alpha)$.	
17	MacConkey's broth for detection of coliforms showing	128
	negative result (violet colour) by the multiple tube technique.	


18	Three tubes of MacConkey's broth, the first from the left	128
	showing negative result, the second shows lactose-	
	fermenting organism with production of acid only, and the	
	third shows lactose-fermenting organism with production of	
	acid and gas.	
19	Azide dextrose broth for detection of <i>Enterococci</i> , first tube	129
	showing turbidity (positive), while the second is clear	
	(negative).	
20	Aspargin broth for detection of Pseudomonas aeruginosa,	129
	showing turbidity and surface greenish discolouration	
	(positive) by multiple tube technique.	
21	Bacillus spp. dark colonies, showing complete (B)	130
	haemolysis on blood agar.	
22	Enterococci spp. on bile esculin agar, showing tiny black	131
	colonies.	
23	Signal blood culture bottle, showing fluid in the signal	131
	device representing positive blood culture.	


LIST OF TABLES


Figure no.	Title	Page no.
1	Causes of chronic renal failure.	5
2	The clinical abnormalities in uremic syndrome.	13
3	Components of infection control program.	49
4	Schedule for routine testing for hepatitis B virus and	56
	hepatitis C virus infections.	
5	Vaccination program against HBV in hemodialysis patients.	57
6	Nomenclature of Cytokines.	64
7	Number and volume of bottles used in MPN of coliforms.	95
8	Probability table for calculation of the MPN of E.coli and	96
	Coliforms.	
9	Probability table for calculation of the MPN of <i>Enterococcus</i>	98
	Faecalis.	
10	Probability table for calculation of the MPN of	100
	Pseudomonas aeruginosa.	
11	Etiology of chronic renal failure in the studied group.	113
12	Distribution of type of access among the studied group.	113
13	Relation between blood culture results and type of access	114
	among the studied group.	
14	The blood culture findings.	115
15	The relation between bacteraemia and fever.	116
16	Age description compared to blood culture results.	116
17	Sex description compared to blood culture results.	117

18	Duration of dialysis compared to blood culture results.	117
19	Comparison between the bacteriological findings in the three	118
	units enrolled in the study (tap water and treated water).	
20	Comparison between the findings in the three units enrolled	118
	in the study (tap water and treated water).	
21	Comparison between the findings in the three units enrolled	119
	in the study (dialysate samples).	
22	The relation between bacteraemia and microbiological	121
	findings in treated water.	
23	The anti-biogram pattern of the bacterial isolates from blood	121
	culture and water samples.	
24	The number of colony forming units/ dialysate sample in the	122
	three hemodialysis units.	
25	Crosstabulation between different machine types and	122
	number of organisms/ machine.	
26	Comparison between the machine type and number of	123
	colony forming units/ machine.	
27	Compliance of the different water samples to the AAMI	123
	standard.	
28	The median values of IL-1 β and TNF- α in relation to fever.	124
29	The median values of IL-1 β and TNF- α in relation to	125
	bacteraemia.	
30	The values of IL-1β in dialysis patients compared with the	126
	normal controls.	
31	The values of TNF-α in dialysis patients compared with	126
	normal controls.	

