العلاج التأهيلي في مرضي خلل الاتزان الطرفي

رسالة

مقدمة كجزء متمم

للحصول علي درجة الدكتوراة في علم السمع

مقدمة من

الطبيبة/ هدايت السيد محمود الفولي

تحت إشراف

الاستاذ الدكتور/ احمد سامع حسني فريد

أستاذ الأذن و الأنف و الحنجرة عميد كلية الطب جامعة القاهرة

الاستاذ الدكتور/معمد طارق عبد العزيز غنوه

أستاذ أمراض السمع و الصمم كلية الطب جامعة القاهرة كلية الطب جامعة القاهرة ۲۰۰۷

Contents

	Page
Introduction & Aim of The Work	1
Review of Literature	
Physiological background of balance	5
• Vestibular Compensation	15
• Causes of Peripheral Vestibular Disorders	19
• Effect of unilateral peripheral vestibular injury	31
• Assessment of vestibular system	33
• Vestibular rehabilitation	56
• Evidence that vestibular physical therapy facilitates	72
recovery in people with vestibular hypofunction	
Materials and Methods	77
Results	86
Discussion	112
Conclusion	122
Recommendations	123
Summary	124
References	126
Arabic summary	

List of figures

Figure	Title	Page	
No.		8	
1	Balance (gaze & posture) control components	5	
2	Inputs and outputs of the balance system	6	
3	Crista (cupula and ampullary crest)		
4	The effects of angular acceleration on the semicircular	9	
	canals		
5	Vestibular pathway & connections	11	
6	Balance system during rest & turning head in a healthy		
	subject (a,b), Balance system in acute unilateral lesion and		
	compensated condition (c,d)		
7	Electrode montage for electronystagmography (ENG) testing	43	
8	Binocular camera recording for videonystagmography	44	
	(VNG)		
9	ENG/VNG testing	45	
10	Rotatory chair	46	
11	Posturography	50	
12	Sensory Organization Test conditions	51	
13	Gaze Stabilization Exercises	66	
14	Balance & gait exercises	68	
15	Gender distribution in the both groups	84	
16	Pie chart showing gender distribution in the whole study	84	
	group		
17	Hearing status of patients in the study group	85	
18	Hearing status of patients in the control group	85	
19	Patients with and without BPPV among both groups	86	
20	Caloric findings in both groups	87	
21	Pie chart showing Canal paresis patients among both groups	87	
22	Pie chart showing patients grouped according to hearing	88	
	status and canal paresis		
23	No. of patients in both groups among categories of DHI	91	
24	Pre and Post-VRT scores in the study group	92	
25	No. of patients with canal paresis with or without hearing	97	
	loss in the study group		
26	Initial & final evaluation of control group	102	
27	No. of patients with canal paresis with or without hearing	103	
	loss in the control group		
28	Scatter diagram of equilibrium scores in both groups	108	
29	Scatter diagram of vestibular ratio scores in both groups	108	
30	Scatter diagram of DHI scores in both groups	109	

List of tables

Table	Title	Page	
1	Clues to distinguish between central and peripheral causes of	19	
	vertigo		
2	Differential Diagnosis of Vertigo	21	
3	Summary of the vestibular rehabilitation protocols	81	
4	Sample of the home-based VRT program		
5	Age and gender distribution of both groups		
6	Hearing status in both study and control groups	85	
7	BPPV cases among both groups	86	
8	Caloric finding in both groups	86	
9	BPPV patients with or without canal paresis	88	
10	SOT (Equilibrium Score) results in both groups	89	
11	Sensory analysis (vestibular ratio) in both groups	89	
12	Mean Equilibrium Scores in both groups	89	
13	Mean Vestibular SOT scores in both groups	89	
14	Patients with abnormal SOT with or without Canal paresis	90	
	(CP)		
15	Mean DHI scores in both groups	90	
16	No. of patients in both groups among DHI categories	90	
17	Mean SOT equilibrium score Pre-VRT & Post-VRT in the	91	
	study group		
18	Mean vestibular SOT score Pre-VRT & Post-VRT in the	92	
	study group		
19	Mean DHI score Pre-VRT & Post-VRT in the study group	92	
20	Changes in the DHI scores in the study group after VRT	92	
21	Study group patients grouped as regards presence of canal	93	
	paresis/ abnormal SOT		
22	Pre- & Post-VRT scores in the canal paresis group	93	
23	Pre- & Post VRT scores in the abnormal SOT (without canal	94	
	paresis) group		
24	P values showing difference in pre & post-VRT assessment	94	
	in canal navosis & non canal navosis avouns		
	in canal paresis & non-canal paresis groups		
25	Patients with BPPV in the study group	95	
26	Pre and Post VRT scores in BPPV group	95	
27	Pre and Post VRT scores in non-BPPV group	96	
28	P values showing difference in pre & post-VRT assessment	96	
	in BPPV & non-BPPV groups		
29	Number of patients with canal paresis with or without	97	
	hearing loss in the study group		
30	Pre and Post VRT scores in the canal paresis with hearing	97	
	loss group		
31	Pre and Post VRT scores in the canal paresis without	98	
	hearing loss group		

32	Pre and Post VRT scores in the non canal paresis non	98
	hearing loss group	
33	Patients with and without hearing loss in the study group	99
34	Pre and Post VRT results of the group with normal hearing	99
35	Pre and Post VRT results of the group with hearing loss	100
36	P values showing difference in pre & post-VRT assessment	100
	in patients with & without hearing loss	
37	Correlation between age and VRT outcome	101
38	Initial & final evaluation of the control group	101
39	Initial & final results of the canal paresis group	102
40	No. of patients with canal paresis with or without hearing	103
	loss in the control group	
41	Initial & final results of the canal paresis with hearing loss	103
42	group Initial & final results of the non canal paresis group	104
	2 0 2	
43	P values showing difference in initial & final assessment in	104
	patients with canal paresis with hearing loss group & non	
	canal paresis group	
44	Patients grouped according to hearing status	105
45	Initial & final results of patients without hearing loss	105
46	Initial & final results of patients with hearing loss	105
47	P values showing difference in initial & final assessment in	106
	patients with & without hearing loss	
48	Changes in BPPV patients of the control group	106
49	Initial & final evaluation in non-BPPV group	107
50	Initial & final evaluation in BPPV group	107

Abstract

Objective: To determine the outcome of vestibular rehabilitation protocols in subjects with peripheral vestibular disorders compared with abnormal control subjects. Study Design: Randomized study using repeated measure, matched control design. Subjects were solicited consecutively according to these criteria: vestibular disorder subjects who had abnormal results of computerized dynamic posturography (CDP) sensory organization tests (SOTs) 5 and 6 and/or canal paresis. Besides, unresolved BPPV. Subjects: Men and women over age 18 with chronic vestibular disorders and chief complaints of unsteadiness, imbalance, and/or motion intolerance. Interventions: Pre- and post-rehabilitation assessment included CDP, & DHI. Individualized rehabilitation plans were designed and implemented to address the subject's specific complaints and functional deficits. Supervised sessions were held at weekly intervals, and self-administered programs were devised for daily home use. Main Outcome Measures: CDP composite and vestibular ratio scores, self-assessment questionnaire results (DHI scores). Results: Subjects who underwent rehabilitation (Group A) showed statistically significant improvements in SOTs, overall composite score, and DHI scores, abnormal (Group B) control groups had statistically significant improvement as regards DHI scores only. Conclusions: Outcome measures of vestibular protocol physical therapy confirmed objective and subjective improvement in subjects with chronic peripheral vestibular disorders. These findings support results reported by other investigators.

Key Words: Vestibular rehabilitation—Peripheral vestibular disorders— Computerized dynamic posturography—Sensory organization testing—DHI.

Acknowledgment

I would like o express my greatest appreciation to Professor Dr. Ahmad Sameh Hosni Fareed for his support, help, continuous encouragement and precious time.

I would like also to express my gratitude to Professor Dr. Mohammad Tarek Ghanoum, for his supervision and valuable advice.

Finally, I would like to thank my family, friends, and colleagues for their help and support.

Aim of The Work

- 1. To determine the objective response to individualized vestibular rehabilitation therapy (VRT) protocols in subjects with peripheral vestibular disorders.
- 2. To determine the effectiveness in decreasing some symptoms, such as vertigo, and increasing performance of daily life skills after VRT.
- 3. To manage benign paroxysmal positional vertigo (BPPV) patients, who has been under successful canal repositioning procedures, and still complain of vertigo or unsteadiness.

Conclusions

- 1. Outcome measures of vestibular rehabilitation protocols confirmed objective and subjective improvement of balance and dizziness handicap in patients with peripheral vestibular disorders.
- 2. Based on an understanding of the vestibular system, the balance system, and normal functional capabilities, appropriate rehabilitative exercises can be designed for patients with chronic vestibular loss.
- 3. Vestibular rehabilitation improves symptoms, postural stability, and dizziness-related handicap in patients with chronic dizziness.
- 4. Successful vestibular rehabilitation therapy improves activities of daily living.
- 5. The results indicate that home-based exercises can significantly improve balance abilities in people with chronic vestibular dysfunction.
- 6. We believe that vestibular habituation retains a useful role in the treatment of BPPV.

Discussion

Vestibular rehabilitation therapy is not new. It has long been recognized clinically as an effective method of managing peripheral vestibular disorders. In 1944, Cawthorne proposed a physiologic basis for head exercises for treatment of "giddiness" (vertigo). Vestibular rehabilitation therapy clearly and unequivocally improves both function and symptoms in patients with peripheral vestibular disorders (*Black et al.*, 2000).

This randomized controlled study was conducted on 45 patients, in the period from October 2004 to October 2006. Their ages range from 21 to 69 years old, their mean age is 43.9 (SD 12.9). The whole study group was divided into two groups; group A (study group), which included patients suffering from vertigo, with canal weakness or abnormal SOT, or both. This group consists of 34 patients. The other group, group B (control group), included patients having same complaints, and findings as group A, but these patients weren't subjected to VRT, as with group A patients. This group included 11 patients.

Group A had 17 female, and 17 male patients, while group B had 6 female and 5 male patients.

The assessment of all patients was done initially before starting VRT, and were re-evaluated later after 3 months of VRT sessions (study group), or after 3 months duration in the control group.

Assessment included; objective measures which are; hearing status of the patients, search for spontaneous nystagmus, oculography, positional and positioning tests (searching for BPPV cases), caloric testing, SOT (composite, and vestibular ratio scores).

Though SOT testing is a popular measure in assessing patients with peripheral vestibular disorders, and assessing improvement related to VRT, still some authors might find it an invalidated measure in assessing the functional limitations in those patients. *O'Neil et al, (1998)*, assessed the validity of SOT, and they found that SOT lacks concurrent validity with functional and gait performance measures in patients who present with peripheral vestibular hypofunction and requested VRT for their postural instability. Accordingly, SOT by itself is not a useful measure to assess changes in balance and functional performance in patients with vestibulopathy.

We also included a subjective assessment in the form of DHI to better analyze the patients symptoms and disabilities related to these symptoms.

Group A patients had 15 patients with normal hearing status, 16 with unilateral SNHL, and 3 with bilateral SNHL. Group B patients had 5 patients with normal hearing levels, 5 with unilateral SNHL, and one patient with bilateral SNHL.

Both study groups had patients with BPPV, who had been under various treatments including canal repositioning procedures, but still complain of postural instability or unsteadiness. Our aim in including those patients was to find other strategy in treating persistent BPPV cases.

All patients in group A were subjected to VRT for 3 months, based on weekly supervised sessions, and home based exercises. The VRT program was designed for every patient according to his or her complaints. All patients were subjected to postural exercises, as it has been proven to improve the outcome of patients in performing better in daily activities, and even in vestibular testing. According to symptoms present, some patients were given gaze stabilization exercises, habituation exercises designed to facilitate central nervous system compensation by extinguishing pathologic responses to head motion, , and general conditioning activities. The

progress of exercises depends on the amount of improvement shown by each patient in the weekly visits. As the performance gets better the amount and quality of exercises are increased, but either the number or the quality of exercises are increased each time, this enables the patients to better understand and perform in the program.

Much of our findings results from an individualized VRT program for each subject. By tailoring the VRT approach to each patient's specific functional deficits and symptoms, and by making frequent adjustments based directly on their progress or lack of progress, we have observed positive responses in almost all our subjects.

The composite score in our study showed high statistically significant improvement (P=0.001) after completion of VRT, compared to results obtained pre-VRT. These results are matching with those obtained by **Badke et al. (2005)**, who found significant improvement in composite SOT scores. **Perez et al.(2006)** also confirm this finding that SOT scores improved in the 37 patient they conducted VRT on for 5 weeks interval. These findings were obtained by **Brown et al. (2001)**, **Black et al. (2000)**, **Blakley et al (1999)**, **Yardley et al. (1998)**, **Cass et al. (1996)** and **Shepard et al. (1993)** too, who documented that physical therapy results in an improvement in balance in patients with peripheral vestibular disorders. These studies suggested that after full compensation, results of posturography tests normalize and patients lose their abnormal vestibular pattern. **Cohen & Kimball (2004)** also studied effect of VRT on gait, balance, and ataxia, and found that SOT scores had improved significantly in addition to improved time to perform TUG.

On the other hand we found that the vestibular ratio improved, yet the improvement didn't reach a statistically significant value (P=0.12). Our findings, Among all patients in both groups, the post-VRT (or after 3 months in the control group), the vestibular ratio improved to an insignificant value, though the equilibrium scores did improve to a statistically significant figure, denoting that VRT improves