ROLE OF MRI DIFFUSION-WEIGHTED IMAGING AND COLOR DOPPLER ULTRASONOGRAPHY IN CHARACTERIZATION OF MUSCULOSKELETAL TUMORS

Thesis

Submitted for partial fulfillment of MD degree in radiodiagnosis

Presented by

Ehab Ahmed El-Badawy Salem (M.B.B.ch; M.Sc in radiodiagnosis)

Under supervision of

Dr. Mohamed Kamal

Professor of radiodiagnosis
Faculty of Medicine, Cairo University

Dr. Ibrahim Taha El-Gaady

Professor of orthopedic surgery Faculty of Medicine, Cairo University

Dr. Magdy Ezz El-Arab

Assistant professor of radiodiagnosis Faculty of Medicine, Cairo University

Dr. Amal Refaat Sayed

Assistant professor of radiodiagnosis National Cancer Institute, Cairo University

> Faculty of Medicine Cairo University 2009

ABSTRACT

Purpose: To evaluate the signal characteristics of MRI diffusion-weighted sequences of musculoskeletal tumors and its ability to differentiate between benign and malignant lesions and study of their vascularity and perfusion by color Doppler ultrasonography

Material and methods: The MR imaging protocol including the conventional T1 weighted (T1W), T2-weighted (T2W) and diffusion weighted (DW) echo-planer imaging (EPI), and contrast-enhanced T1W images. DWI was obtained before contrast medium injection, with *b* values including 50, 400 and 800 mm²/second. The Apparent Diffusion Coefficient (ADC) generated by measuring identical images at different b-values and represented as ADC map from which ADC value calculated.

Diagnostic gray-scale US was performed to assess margin, growth pattern and internal echotexture of the tumor. The vascular pattern of each tumor was assessed by using color Doppler US.

Results: There were highly significant difference of the ADC value for soft tissue tumors between benign and malignant tumors (P<0.01). Two threshold values for ADC soft tissue tumors were obtained at cut off value 1.50, the sensitivity is 75%, the specificity is 70% and the efficacy is 66.6 %. And on cut off value 1.57, the sensitivity is 87.5%, the specificity is 60% and the efficacy is 77.6%. There were highly significant difference in RI of soft tissue tumors between benign and malignant tumors (p<0.01). The RI cut off value 0.64 shows sensitivity 75%, specificity 85% and efficacy 80 %. There were highly significant difference for ADC values of bone tumors between benign and malignant tumors (P<0.01). Threshold value of ADC bone tumors at 1.58 showing sensitivity, specificity and efficacy about 76.1%, 80% and 77.4% respectively. In follow up of one patient with bone tumor after therapy we found increase in ADC value measurement.

Conclusion: DWI with ADC mapping proved valuable information in differentiating benign from malignant lesion with highly significant difference between ADC value of benign and malignant lesion. Doppler study and spectral wave analysis will increased the sensitivity and specificity in evaluation of soft tissue tumors.

Keywords:

Magnetic resonance image (MRI)-Soft tissue tumors-Bone tumors-Diffusion weighted imaging (DWI)-Apparent diffusion coefficient (ADC)-Ultrasound-Doppler.

Acknowledgment

My endless and everlasting thanks to my God

I would like to express my great gratitude and appreciation to **Prof.**Dr. Mohamed Kamal., professor of radiodiagnosis. Cairo University, for his indispensable help, meticulous supervision and fruitful remarks that are inscribed within this work. His great experience and wild knowledge were very helpful in guiding me throughout this work.

I would like also to extend my thanks to **Prof**. Dr. Ibrahim Taha El-Gaady Professor of orthopedic surgery. Cairo University for great assistance, sincere guidance and reliable advice throughout this work. He has been generous with time and effort in this work.

My profound thanks to Ass. **Prof. Dr. Amal Refaat.**, Assistant professor of radiodiagnosis, national cancer institute, for here excellent supervision, guidance and valuable advice throughout the work.

I would further to extend my appreciation and gratefulness to Ass. **Prof.** Dr. **Magdy** Ezz Elarab Assistant professor Radiodiagnosis. Cairo University, for hiskind help and sincere supervision.

I wish to thank all my patients without whom this work would never have been completed.

TABLE OF CONTENT

ist of abbreviation	
ist of figures	
ntroduction	••••••
eview of the litera	ture
Chapter I C	linical And Pathological Overview
	Soft tissue tumors
	Etiology
	Pathophysiology
	Local recurrence
	Distant metastasis
	Biopsy consideration
	Classification
	Staging
	Pathological characteristic of specific benign S.T tumors
	Pathological characteristic of specific malignant S.T tumor
	Bone tumors
	Classification
	Pathological characteristic of specific benign bone tumor
	Primary bone sarcoma
Chapter II M	IRI evaluation of musculoskeletal tumors
	Soft tissue tumors
	Bone lesions
Chapter III l	Basic Principles Of Diffusion-Weighted Imaging
	Brownian Motion
	Measuring water motion (apparent diffusion) using DWI
	Calculation of the diffusion sensitivity (b value)
	The ADC
	Basic Pulse Sequences for DWI
	Ensuring high-Quality DWI
	DWI for qualitative assessment
	DWI for ADC quantification
	DWI of the normal appendicular skeleton
	Diffusion weighted imaging of the pathologies of MSK

Chapter IV Ultrasound and Doppler of soft tissue tumors	100
Ultrasound Characterization of Musculoskeletal Masses	102
Color Doppler flow in patient with musculoskeletal tumors	103
Monitoring chemotherapy with CDFI	104
Changes in Intratumoral Blood low	105
Changes in Tumoral Blood Supply	108
Material and methods	112
Results	116
Case presentation	140
Discussion	160
Summary and conclusion	178
References	182
Arabic summary	

LIST OF ABBREVIATIONS

% Percentage3T 3 Tesla

ABC Aneurysmal bone cyst ADC Apparent Diffusion Coefficient AJCC American Joint Commission On Cancer **BPNST** Benign Peripheral Nerve Sheath Tumor **CDFI** Color Doppler Flow Imaging **CT** Computed Tomography **DTI** Diffusion Tensor Imaging **DWI** Diffusion-weighted imaging **EPI** Echo Planer Imaging **FNAB** Fine-needle aspiration biopsy G Strength of diffusion gradient (gradient amplitude) **GCT** Giant Cell Tumor **GCTTS** Giant Cell Tumor Of The Tendon Sheath **HHV8** Human Herpes Virus 8 **HIV** Human Immunodeficiency Virus **HPF** High Power Field **IEPI** In Interval Echo-Planar Imaging IV Intravenous **IVIM** Intravoxel incoherent motion **LSDI** Line Scan Diffusion Image MFH Malignant Fibrous Histiocytoma MHz Megahertz min Minute mm2 Square millimeter MR Magnetic Resonance MRI Magnetic Resonance Image **PNET** Primitive Neuroectodermal Tumors **PNST** Peripheral Nerve Sheath Tumor **RF** Radiofrequency RT-PCR Reverse Transcriptase-Polymerase Chain Reaction **SE** Spin Echo **SEER** Surveillance, Epidemiology, and End Results Program **SENSE** Sensitivity Encoding SI measured intensity (at maximal b-value)

- SI_0 Intensity at G=0 (from b=0 image).
- **SPAIR** Spectral presaturation attenuated by inversion recovery
 - **SSFP** Steady State Free Precession
 - **STIR** Short Tau Inversion Recovery
 - **SWA** Spectral Wave Analysis
- **T1 WI** T1 weighted images.
- T2 WI T2 weighted images.
 - tdiff Diffusion time
 - TE Echo time
 - **TM** Maximum time (for diffusion gradient)
 - US Ultrasound
 - Vs Versus
- WHO World Health Organization
 - **α** Flip angle
 - γ Proton gyromagnetic ratio (42 MHz/Tesla).
 - δ duration of each gradient lobe
 - **Δt** Interval of diffusion gradient.

LIST OF TABLES

1.	WHO Classification of soft tissue tumors	12
2.	AJCC GTNM Classification and Stage Grouping of Soft Tissue Sarcomas	16
3.	System of <i>Enneking et al</i> . for staging of soft tissue and bone sarcomas	16
4.	WHO Classification of bone tumors.	33
5.	b Values That May Be Appropriate for Qualitative Tumor Evaluations	94
6.	Typical pulse sequence parameters.	114
7.	MRI findings of benign soft tissue tumors	117
8.	MRI findings of malignant soft tissue tumors	118
9.	DWI signal intensity and ADC value in benign soft tissue tumors	119
10.	DWI signal intensity and ADC value in malignant soft tissue tumors	120
11.	Case summaries of ADC value soft tissue tumors.	121
12.	Case processing summary MRI soft tissue tumors	122
13.	Coordinates of the curve of ADC value soft tissue tumors	123
14.	ADC value soft tissue tumors Cut off value at 1.50	124
15.	ADC value soft tissue tumors Cut off value at 1.57	124
16.	One sample statistic MRI soft tissue tumors	125
17.	T-Test ADC value soft tissue tumors.	125
18.	Ultrasound findings in benign soft tissue tumors	126
19.	Ultrasound findings in malignant soft tissue tumors	127
20.	Doppler findings in benign soft tissue tumors	128
21.	Doppler findings in malignant soft tissue tumors	129
22.	Case processing summary US soft tissue tumors	130
23.	Area under the ROC curve for RI soft tissue tumors	130
24.	Coordinates of the curve of RI value soft tissue tumors.	131
25.	Recommended cut off value is 0.64 of RI soft tissue tumors	132
26.	One sample statistic US soft tissue tumors	132
27.	T-Test RI soft tissue tumors	132
28.	MRI results of benign bone tumors.	133
29.	MRI results of malignant bone tumors.	134
30.	DWI signal intensity and ADC value in benign bone	135
31.	DWI signal intensity and ADC value in malignant bone	136
32.	Case processing summary MRI bone tumors	137
33.	Area under the curve bone tumors	
34.	Coordinate of the curve of ADC value bone	138
35.	ADC value bone tumors at Cut off value 1.58	139
36.	One sample statistic MRI bone tumors	139
37.	T-test of ADC value bone	139

LIST OF FIGURES

FIG 1	Survival by Enneking's surgical stage of 219 patients with primary bone sarcoma.	14
FIG 2	Microscopic appearance of deep BFH	17
FIG 3	Aggressive fibromatosis	18
FIG 4	Microscopic appearance of fibromatosis	18
FIG 5	Giant cell tumor tendon sheath	21
FIG 6	Soft tissue lipoma	22
FIG7	Intramuscular lipomas, yellow adipose tissue withinskeletal muscles.	23
FIG 8	Deep-seated malignant fibrous histiocytoma (MFH)	26
FIG 9	MFH, a high-grade sarcoma,	27
FIG 10	Large, low-grade liposarcoma.	28
FIG 11	The diagnosis of a well-differentiated liposarcoma depends on the identification of characteristic lipoblasts.	29
FIG 12	The gross appearance of a well-differentiated fibrosarcoma.	29
FIG 13	Low-grade fibrosarcoma	30
FIG 14	Synovial sarcoma	31
FIG 15	Chondroblastoma .Expansile and osteolytic lesion of proximal digits	34
FIG 16	Juxtacortical Chondroma lower end femur.	35
FIG 17	Chrondromyxoid fibroma upper tibia	36
FIG 18	Microscopic appearance chrondromyxoid fibroma	37
GIG19	Cavernous Hemangioma orbital ridge	37
FIG20	Microscopic appearance bone Hemangioma	38
FIG 21	Aneurysmal bone cyst	39
FIG 22	Multinucleated giant cells and spindle cells	39
FIG 23	Giant cell tumor upper tibia	43
FIG 24	High-grade osteosarcoma of the proximal humerus.	44
FIG 25	Classical high-grade osteosarcoma	44
FIG 26	Macrosections of central chondrosarcomas of the proximal tibia	47
FIG 27	Low-grade chondrosarcoma	47
FIG28	The juxtaposition of high-grade spindle sarcoma with lobules of low-grade chondrosarcoma	48
FIG 29	Ewing's sarcoma	49
FIG 30	Microscopic appearance of Ewing's sarcoma	50
FIG 31	Lipoma.	54
FIG 32	Hyperintense hemangioma.	55
FIG 33	Fibromatosis, uniform low signal intensity (arrows) on T1-weighted (A) coronal and (B) axial images and on (C) a T2-weighted axial image.	56
FIG 34	Malignant fibrous histiocytoma of the medial thigh compartment.	57
FIG 35	Liposarcoma.	58
FIG 36	Low-grade liposarcoma. Axial T1-weighted image obtained with fat saturation	60

EIC 27	(a) and axial proton-density-weighted image (b). MELL in the lower systemists Axial T1 weighted (a) and T2 weighted image (b).	<i>(</i> 1
FIG 37	MFH in the lower extremity Axial T1 weighted (a) and T2-weighted image (b) images.	61
FIG 38	Intramuscular hematoma. Axial T1-weighted (a) and axial T2-weighted images (b).	61
FIG 39	Parosteal osteosarcoma (a) Plain radiograph (b) Axial T1-weighted image.	62
FIG 40	Calcific myonecrosis (a) Plain radiograph. b, c) Coronal inversion-recovery (b) and axial T1-weighted (c) images.	65
FIG 41	GCT. (a) Plain radiograph. (b, c) Coronal inversion-recovers) (b) and axial T1-weighted (c) images.	68
FIG 42	Centrally located and well-circumscribed unicameral or simple bone cyst of the proximal diaphysis of the humerus.	69
FIG 43	Aneurysmal bone cyst	70
FIG 44	Metastatic adenocarcinoma. (a) Plain radiograph (b) Sagittal proton-density-weighted image.	71
FIG 45	Ewing's sarcoma of the femur.	72
FIG 46	Osteosarcoma.	72
FIG 47	Salmonella osteomyelitis. (a) Plain radiograph (b, c) Coronal (b) and axial (c) T2-weighted images.	73
FIG 48	Osteochondroma. (a) Plain radiograph. (b) Axial T2-weighted image.	75
FIG 49	Fibrous dysplasia with an ABC component (a) Plain radiograph (b, c) Axial (b) and coronal (c) T1-weighted images.	76
FIG 50	Diffusion pathways in vivo	79
FIG 51	Measuring water diffusion.	81
FIG 52	A, B Diffusion-weighted imaging on probes of water, acetone, polyethylene glycerol (PEG), dimethylated sulfoxide (DMSO) and fat without diffusion weighting (a) (Δ =0.6 ms) and with high diffusion weighting (b) (Δ =9 ms).	86
FIG 53	Mean values of the regression coefficients.	96
FIG 54	A 46-year-old woman who had surgery and postsurgical radiation therapy for malignant fibrous histiocytoma the thigh. A The coronal STIR image. B The axial SSFP sequence without diffusion weighting shows. C The same image plane with high diffusion weighting ($\Delta = 9$ ms).	99
FIG 55	A leiomyosarcoma of gluteal region with chaotic central vascular pattern	106
FIG 56	A foreign body granuloma of the wrist subcutaneous, soft tissue with organized peripheral vascular pattern.	106
FIG 57	A synovial sarcoma of paraspinal region with an organized peripheral and central vascular pattern.	106
FIG 58	Myositis proliferans in right thigh of a 16-year-old patient. Three dimensional power Doppler US image demonstrates prominent tumor vessels (arrows) diminishing in size to smaller vessels (arrowheads) at the tumor periphery.	107
FIG 59	Neurofibrosarcoma (4-6 cm) in right gluteal area in a 55-year-old patient. Three-dimensional power Doppler US image shows anarchic vessel architecture with multiple loops (solid arrows) and caliber changes (open arrows).	107
FIG 60	Liposarcoma in right inguinal region (a) Longitudinal color Doppler US image shows tumor vessel at tumor margin, with a connection to itself corresponding to a self loop (arrows). (b) SWA of self loop shows peak systolic flow of 40.4	111

	cm/sec (curved arrow) and high diastolic flow of 20.2 cm/sec (straight arrow), with a resulting RI of 0.5.	
FIG 61	Color Doppler US images (a) Longitudinal scan shows chondrosarcoma, representing a stenosed tumor vessel. (b) Transverse scan shows chondrosarcoma. SWA of occluded tumor vessel (c) Longitudinal scan shows chondrosarcoma in left femur, with SWA of arteriovenous shunt.	111
FIG 62	ROC curve of ADC value soft tissue tumors	122
FIG 63	ROC curve of RI index soft tissue tumors	130
FIG 64	ROC curve bone tumors	137
FIG 65	Chondroblastoma: 58A plain x-ray. 58B T1 WI. 58C T2 WI Diffusion signal 58 D, E, and F. ADC map: 58G.	141
FIG 66	Desmoplastic Fibroma: plain x-ray 59A. 59B $T1$ WI 59C $T1$ with contrast. 59D $T2$ WI . Diffusion signal intensity ($b = 50$, 400 and 800,59 E , F & G respectively. ADC map 59H.	143
FIG 67	Chrondromyxoid fibroma: plain x-ray 60A. 60B $T1$ WI . 60C $T1$ WI with contrast. 60D $T2$ WI . Diffusion signal intensity $b = 800$ Fig. 60 G. Fig. 60 E and F showing diffusion in b value 50 and 400 respectively. ADC map (Fig. 60 H).	145
FIG 68	Osteosarcoma: 61A plain-x-ray. 61B <i>T1 WI</i> . 61C <i>T2 WI</i> . 61D <i>T1 with contrast</i> . <i>Diffusion signal intensity</i> b values 50, 400 and 800 mm²/second Fig. 61 E, F and G respectively). <i>ADC map</i> (Fig. 61 H).	147
FIG 69	Osteosarcoma: Plain X-ray (Fig 62 A). <i>T1 WI</i> (Fig. 62 B). <i>T1 WI with contrast</i> (Fig. 62 C). <i>T2 WI</i> (Fig. 62 D). <i>Diffusion signal intensity:</i> (<i>b</i> values 50, 400 and 800 mm ² /second (Fig. 62 E, F and G) respectively. <i>AC map</i> : (Fig. 62 H).	149
FIG 70	Ewing sarcoma: Plain x-ray Fig. 63A representing the initial X-ray Follow up after chemotherapy Fig. 63B. T1 WI Fig 63 C. T1 WI with contrast showing Fig. 82 D. T2 WI Fig. 63 E. Diffusion signal intensity before therapy (b value 800) Fig. 63 F. After therapy b value 800) Fig. 63 G. ADC map (Fig. 63 H) before therapy, Fig 63 I ADC after therapy.	151
FIG 71	PENT: T1 WI Fig. 64A. T1 WI Fig. 64B. T2 WI Fig.64C. Diffusion signal intensity b values 50, 400 and 800 mm ² /second (Fig. 64D, E and F. ADC map Fig. 64G. Grey scale ultrasound Fig. 64H. Color Doppler Fig. 64 I.	153
FIG 72	Rhabdomyosarcoma T1 WI Fig. 65A. T2 WI Fig. 65B. T1 WI with contrast Fig. 65C. Diffusion signal intensity b values 50, 400 Figs. 65 D, E and F respectively. ADC map Fig. 65G. Grey scale Fig. 65I. Color Doppler Fig. 65H.	155
FIG 73	Cavernous Hemangioma T1 WI Fig. 66A. T2 WI Fig. 66B. T1 WI with contrast Fig. 66C. Diffusion signal intensity b value 800 Fig. 66F. Figs. 66 D and F showing b value 50 and 400 respectively. ADC map Fig. 66G. Grey scale	157
FIG 74	ultrasound Fig. 66I.Color Doppler Fig. 66H. Calf abscess: T1 WI Fig. 67A. T2 WI Fig. 67B. T1 WI with contrast Fig. 67C. Diffusion signal intensity Figs. 67 D and E respectively). ADC map Fig. 67F. Grey scale ultrasound Fig. 67G. Color Doppler Fig. 67H.	159

INTRODUCTION

Magnetic resonance imaging (MRI) is the method of choice for the diagnosis and follow up of bone and soft tissue tumors. Due to high contrast resolution, soft tissue masses can be easily detected and separated from normal tissues e.g. fat and muscles. After surgery or radiation of malignant soft tissue tumors, there are often marked changes of signal in the adjacent normal tissue due to edema or inflammation. The task for follow up MR examination is to detect a residual or recurrence of the tumor differentiating it from post operative and post radiotherapy changes. With conventional MR sequence, such as T1 and T2weighted images or fat suppression techniques, it is sometimes difficult to distinguish tumor recurrence from post therapeutic changes (*Baur et al.*, 2001).

Intravenous administration of MR contrast agents as those containing gadolinium chelates has been used as an alternative technique to improve tissue contrast by highlight viable, perfused tissue against tumor necrosis (*Erlemann et al., 1990*). However, since the contrast agents that are clinically available are of small molecular size, they are distributed in the interstital space and can diffuse into necrotic tissue, thereby potentially obscuring tumor necrosis on conventional, static contrast agent-enhanced MR images. Rapid sequential imaging technique after bolus administration of gadopentate dimeglimine (i.e. dynamic MR imaging) may be more accurate in assessing tumor necrosis. However, the use of contrast agents increase the cost of the imaging procedure and requires the performance of

additional MR sequence, with the resultant increase imaging time, cost and discomfort to the patient (*Verstraete et al.*, 1994).

Diffusion-weighted images are a relatively new method, which reflects intravoxel incoherent motion (IVIM). In biological tissues, motion includes Brownian motion of extra-, intra and transcelluar individual water molecules (true diffusion) as well as microcirculation of blood (perfusion). Both true diffusion and perfusion contribute to the frequently used apparent diffusion coeficient (ADC) *(Catherina et al., 2002)*.

Diffusion-weighted MRI has been used successfully in the central nervous system especially in the diagnosis of acute stroke, also in distinguishing different component of brain tumor (*Gonzalez et al.*, 1999).

Diffusion measurements of tumors outside the brain have also been reported. A study of osteogenic sarcoma in rats by *Lang et al.*, 1998 indicates that diffusion weighted MRI can accurately differentiate between viable and necrotic tumor region.

Moreover; *Bauer et al.*, 1998 report diffusion measurements in human spine that could reliably differentiate acute benign from neoplastic vertebral compression fractures.

Post therapeutic soft tissue changes may pose a problem in the distinction from early tumor recurrence since all these pathologies have high

signal intensity on T2 weighted and STIR images and low signal intensity on T1 weighted SE images (*Roberts.*, 1997).

In detection of musculoskeletal masses, especially soft tissue masses, ultrasonography is readily available, inexpensive, and noninvasive modality. In this respect, although not widely used, it's also useful in assessment bone tumors with an associated soft tissue mass (Van der Woud & Vanderschueren, 1999).

The introduction of color Doppler flow imaging (CDFI) has result in the ability to assess the degree of vascularization and intra tumoral blood flow of solid masses. In addition, power Doppler sonography may add benefit due to improved signal to noise ratio relative to conventional Doppler techniques. Power Doppler sonography particularly allows visualization of areas of hyperperfusion, for instance those associated with musculoskeletal inflammatory disease (Newman et al., 1994).

CDFI and power Doppler ultrasound may also play a role in monitoring the effects of neoadjuvant chemotherapy in patients with sacrcoma of bone or soft tissues, based on changes in tumoral vascularization and perfusion (Van der Woude et al., 1995).

AIM OF THE WORK:

The aim of this study is to evaluate the signal characteristics of MRI diffusion-weighted sequences of musculoskeletal tumors and its ability to differentiate between benign and malignant lesions and study of their vascularity and perfusion by color Doppler ultrasonography.