A Study of The Relationship Between Airway Inflammation and Dipalmitoyl Phosphatidycholine in Induced Sputum of Asthmatic Children

Thesis
Submitted for Partial Fulfillment of
Master Degree in Pediatrics

By Hammam Ibrahim Al-Moursy M.B., B.Ch

Supervisors

Prof. Dr. Karima Ahmed Abd-El Khalek

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

Dr. Malak Ali Shaheen

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Dr. Manal Mohamed Abd Al-Aziz

Assist. Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University Cairo, 2005

Acknowledgement

First and foremost, thanks to "ALLAH" for granting me the power to accomplish this work.

I would like to express my endless gratitude and appreciation to *Prof. Karima Ahmed Abd El-Khalek*, Professor of Pediatrics, Ain Shams University, for giving me the opportunity to work under her meticulous supervision and for providing me with lots of encouragement and support throughout this work.

No words can describe the enormous effort and genius help of *Dr. Malak Ali Shaheen*, Lecturer of Pediatrics, Ain Shams University, to whom I am truly indebted. Her enthusiasm and honest assistance in every step made the achievement of this work possible.

The sincere help of *Dr. Manal Mohamed Abd El-Aziz*, Assist Professor of Clinical Pathology, Ain Shams University, is truly acknowledged. She gave me a lot of her valuable time to achieve the laboratory part of this work.

A great deal of my gratitude goes to the children and their parents for their kind cooperation and patience.

To my parents, wife and great family, I owe my utmost gratitude for their support and understanding.

Hammam Ibrahim 2005

CONTENTS

SUBJECT	PAGE
Introduction and Aim of the Work	1
Pediatric Bronchial Asthma	4
Pulmonary Surfactant	40
Subjects and Methods	52
Results	58
Discussion	80
Summary and Conclusion	94
Recommendations	97
References	98
Appendix	116
Arabic Summary	

Abbreviations

aa	Amino acid
AHR	Airway hyperresponsiveness
ARDS	Acute respiratory disease syndrome
BALF	Bronchoalveolar lavage fluid
bFGF	Basic Fibroblast growth factor
BMI	Body mass index
CAMP	Children Asthma Management Program
CCR	Chemokine receptor
CD40	Cluster of differentiation 40
CFC	Colony-forming cell
CO-2	Cyclooxygenase-2
COPD	Chronic obstructive pulmonary disease
DC	Dendritic cells
DPPC	Dipalmitoyl phosphatidylcholine
DSPs	Disaturated PLs
ECG	Electrocardiogram
ECP	Eosinophil cationic protein
EGF	Epidermal derived growth factor
EIA	Exercise-induced asthma
EOS	Eosinophils
EPO	Eosinophil peroxidase
EPX	Eosinophil protein X
FEF _{25-75%}	Forced expiratory flow rate over 25-75% part of FVC
FEV_1	Forced expiratory volume in 1 second
FVC	Forced vital capacity
GER	Gastroesophageal reflux
GINA	Global Initiative for Asthma
GM-CSF	Granulocyte-macrophage colony-stimulating factor

HS	Hypertonic saline
IFN-γ	Interferon-gamma
IgE	Immunoglobulin E
IGF-1	Insulin-like growth factor
IL	Interleukin
ISAAC	International study of asthma and allergies in children
kDa	Kilodalton
LA	Large aggregates
LT	Leukotrien
MBP	Major basic protein
MC	Mast cells
MCP-1	Macrophage chemoattractant protein-4
MDC	Monocyte-derived chemokine
MMPs	Matrix metalloproteinases
NAEPP	National Asthma Education and Prevention Program
NANC	Non adrenergic non cholinergic
NCICAS	National Cooperative Inner-City Asthma Study
NGF	Nerve growth factor
NO	Nitric oxide
P	Pressure
PaCO ₂	Arterial carbon dioxide tension
PAF	Platelet activating factor
PD-ECGF	Platelet-derived endothelial cell growth factor
PDGF	Platelet-derived growth factor
PEF	Peak expiratory flow
PFTs	Pulmonary function tests
PL	Phospholipid
r	Radius
RANTES	Regulated on activation of normal T cell expressed
	and secreted chemokines

RDS	Respiratory disease syndrome
RSV	Respiratory syncytial virus
SA	Small aggregates
SALP	Surface-active phospholipid
SaO ₂	Anterial oxygen saturation
SCF	Stem cell factor
SD	Standard deviation
SP	Surfactant protein
T	Surface tension
TARC	Thymus- and activation-regulated chemokine
TCR	T-cell receptor
TGF-B	Transforming growth factor B
Th-0	Naive T-lymphocyte
Th2	T helper subset 2
TIMPs	Inhibitors of MMPs
TNF-α	Tumor necrosis factor-alpha
VCAM-1	Vascular cell adhesion molecule-1
VEGF	Vascular endothelial growth factor
VPF	Vascular permeability factor

LIST OF TABLES

Review Tables	Page
Table (1): Putative mediators of remodeling	17
Table (2): Respiratory viruses and respiratory	23
conditions associated with them	
Table (3): Asthma triggers	26
Table (4) Differential diagnosis of childhood	31
asthma	
Table (5): Asthma classification	32
Table (6): Choice of inhaler device for children	35
Table (7): Asthma medications by category	36
Table (8): Recommended medications by level of	38
severity: Adults and children older than 5	
years of age	
Table (9): Recommended medications by level of	39
severity: Children younger than 5 years of	
age	
Table (10): Composition of pulmonary surfactant	42
Table (11): Levels of surfactant/lipids in lung	46
disease	
Results Tables	
Table (1): Age in years and sex of the studied	58
groups.	
Table (2): Statistical comparison between the	59
asthmatic group and control one as regards	
pulmonary function tests (PFTs).	
Table (3): Statistical comparison between the	60
asthmatic subgroups and the controls as	
regards the mean FEV ₁ % of predicted.	
Table (4): Statistical comparison between the	61
asthmatic subgroups and the controls as	
regards the mean FVC% of predicted.	

Table (5): Statistical comparison between the	62
asthmatic subgroups and the controls as	
regards the mean FEF _{25-75%} of predicted.	
Table (6): Statistical comparison between	63
asthmatic group and control one as regards	
the mean value of sputum variables.	
Table (7): Statistical comparison between	64
asthmatic subgroups and the controls as	
regards the mean values of sputum	
eosinophilic cationic protein (as an	
inflammatory marker).	
Table (8): Statistical comparison between	66
asthmatic subgroups and the controls as	
regards the mean values of sputum	
eosinophils % (as an inflammatory marker).	
Table (9): Statistical comparison between	69
asthmatic subgroups and the controls as	
regards the mean values of sputum	
neutrophils % (as an inflammatory marker).	
Table (10): Statistical comparison between	70
asthmatic subgroups as regards the mean	
values of serum eosinophils %.	
Table (11): Statistical comparison between	71
asthmatic subgroups as regards the mean	
values of serum neutrophils %.	
Table (12): Statistical comparison between	72
asthmatic subgroups and the control group	
as regards the mean values of sputum	
dipalmitoyl phosphatidycholine.	
Table (13): Statistical correlation between the	74
mean values of sputum (DPPC) and some	
studied parameters in asthmatic children.	
Table (14): Statistical correlation between the	78
mean values of sputum (ECP) and some	
studied parameters in asthmatic children.	

LIST OF FIGURES

Review Figures	Page
Fig (1): Twelve-month prevalence of self-reported	5
asthma symptoms from written	
questionnaires	
Fig (2): The pathophysiology of asthma	7
Fig (3): The cytokine network in asthma	13
Fig (4): Chemokines in asthma	14
Fig (5): Inflammation and remodeling in asthma	15
Fig (6): Airway wall thickening in asthma	16
Fig (7): Eosinophils in some diseases.	18
Fig (8): Eosinophils entertain a cross-talk with	19
mast cells, fibroblasts, and endothelial cells	
to influence various physiological or	
pathological processes	
Fig (9): Metabolism of surfactant	41
Fig (10): LaPlace's law.	44
Fig (11): Interaction of surfactant with airway	50
inflammation in asthma.	
Results Figures	
Figure (1): Statistical comparison between	65
asthmatic subgroups and controls as regards	
the mean values of sputum eosinophilic	
cationic protein (ECP).	
Figure (2): Statistical comparison between	67
asthmatic subgroups and controls as regards	
the mean values of sputum eosinophils.	
Figure (3): Statistical comparison between	69
asthmatic subgroups and control as regard	
the mean value of sputum neutrophils.	

Figure (4): Statistical comparison between	73
asthmatic subgroups and controls as regards	
the mean values of sputum dipalmitoyl	
phosphatidylcholine (DPPC).	
Figure (5): Scatter diagram showing the	75
correlation between sputum DPPC level and	
FEV ₁ % in asthmatic children.	
Figure (6): Scatter diagram showing the	76
correlation between sputum DPPC level and	
FEF _{25-75%} in asthmatic children.	
Figure (7): Scatter diagram showing the	77
correlation between sputum DPPC level and	
sputum ECP in asthmatic children.	
Figure (8): Scatter diagram showing the	79
correlation between sputum ECP level and	
$\mathrm{FEV_{1}\%}$ in asthmatic children.	

Introduction

Childhood asthma is a growing public health problem in the United States. The number of children affected by asthma grew 75% from 1980 to 1994. This increase was present for all children regardless of race, gender, or age. An increasing burden of asthma is placed on the youngest children: The prevalence of this condition increased 160% for children 0 to 4 years old from 1990 to 1994 (*Steyer et al.*, 2003).

Airway inflammation in asthma is extremely complex in origin, regulation, and outcome. The mechanisms involve a cascade of events involving many different kinds of cells, factors, and mediators that interact to create the characteristic inflammatory and tissue remodeling processes of asthma (GINA, 2003).

In school children with atopic asthma, the limited data available indicate that the morphological picture with basement membrane thickening and inflammatory cell infiltration in the airway is similar to that encountered in adults, although not all studies have found eosinophilic inflammation. Basement membrane thickening has been demonstrated even in children with mild/moderate asthma (*Barbato et al.*, 2003).

Pulmonary surfactant is a unique mixture of lipids and surfactant-specific proteins that covers the entire alveolar, surface of the lungs. Surfactant is not restricted to the alveolar compartments; it also reaches terminal conducting airways and is present in upper airway secretions. While the role of surfactant in the alveolar compartment has been

intensively elucidated both in health and disease states, the possible role of surfactant in the airways requires further research (*Hohlfeld*, 2002).

An intact and well functioning pulmonary surfactant system is critical for normal respiration and protection from lung infection. Alteration of surfactant composition and function occurs with various inflammatory disorders that affect the airways or the lung parenchyma including asthma (Meyer and Zimmerman, 2002).

Aim of the work

The present work was carried out to investigate and assess the relationship between sputum and blood markers of inflammation [eosinophils, neutrophils, eosinophilic cationic protein (ECP)] to sputum diplamitoyl phosphatidy choline (DPPC) levels, as characteristic and major constituent of pulmonary surfactant in asthmatic children.

CHAPTER 1

PEDIATRIC BRONCHIAL ASTHMA

Definition:

Asthma is a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role. The chronic inflammation causes an associated increase in airway hyperresponsiveness that leads to recurrent episodes of wheezing, breathlessness, chest tightness, and coughing, particularly at night or in the early morning. These episodes are usually associated with widespread but variable airflow obstruction that is often reversible either spontaneously or with treatment (GINA, 2003).

Prevalence of asthma:

There are approximately 6.3 million children with asthma, admission rates for children young than 4 years of age with asthma are greater than those of other age group, and they account for a significant proportion of high annual rate in asthma mortality (*Mannino et al.*, 2002).

The prevalence of asthma symptoms in children varies from 0 to 30 percent in different populations. The international study of asthma and allergies in children (ISAAC) shows the prevalence of wheezing in the last 12 months –documented by written questionnaires – among children 13 to 14 years old in a number of populations.