EFFECT OF SOME AGRICULTURAL PRACTICES ON EARLINESS, YIELD AND QUALITY OF FRIGO STRAWBERRY FRUITS UNDER DRIP IRRIGATION SYSTEM

By AMR ABDELFATTAH HAMED AHMED METWALLY

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2007

A thesis submitted in partial fulfillment of the requirements for the degree of

in
Agricultural Science
(Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

EFFECT OF SOME AGRICULTURAL PRACTICES ON EARLINESS, YIELD AND QUALITY OF FRIGO STRAWBERRY FRUITS UNDER DRIP IRRIGATION SYSTEM

By AMR ABDELFATTAH HAMED AHMED METWALLY

B.Sc. Agric. Sc. (Horticulture), Ain Shams University, 2007

Under the supervision of:

Dr. Mohamed Emam Ragab

Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Salah El-Din Mahmoud El-Miniawy

Associate Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University.

Dr. Sabry Mousa Soliman Youssef

Associate Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Amr Abdelfattah Hamed Ahmed Metwally: Effect of Some Agricultural Practices on Earliness, Yield and Quality of Frigo Strawberry Fruits under Drip Irrigation System. Unpublished M.Sc. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2013.

This study was conducted in a Private Farm in Mit Kenana Village, Shebin El Qanater Center, Qalubia Governorate, Egypt, during the two successive seasons of 2009/2010 and 2010/2011. The study was conducted to investigate the independent effect of some stimulators, i.e. chitosan (2.5 and 5 ml/l), seaweed-extract (1 and 2 ml/l), salicylic acid (1.0 mM and 2.0 mM) foliar sprays with different number of applications (once, twice and three times) as well as the effect of mycorrhiza inoculation on growth, chlorophyll and mineral content of leaves, some fruit-quality parameters and yield of cold stored strawberry plants (*Fragaria x ananassa* Duch. cv. Sweet Charlie).

Results indicated that chitosan spraying increased plant length, number of leaves/ plant, leaf area, fresh and dry weight of roots and vegetative growth, crown carbohydrate and phosphorus and potassium contents of leaf tissues compared with the control treatment in both seasons. Also, chitosan treatments increased early and total yields/plant, while average fruit weight response to the tested chitosan sprayings had an oscillating trend. On the contrary, there was no significant effect for the chitosan treatments neither on SPAD readings and leaf nitrogen content nor on fruit quality characters. The most effective treatment was found to be chitosan at 5.0 ml/l three times.

Seaweed-extract spraying improved vegetative growth characteristics, i.e. plant length, number of leaves/plant, leaf area and fresh and dry weight of roots and vegetative growth. Moreover, seaweed extract treatments increased crown carbohydrate, leaf potassium, fruit weight and early and total yields/plant compared with the control treatment in both seasons. Also, seaweed extracts improved fruit-quality characters without significant differences. On the contrary, there was no

significant effect for seaweed extract on chlorophyll, nitrogen and phosphorus contents of leaves The most effective treatment was found to be seaweed extract at 2.0 ml/l two or three times.

Salicylic acid increased vegetative growth characteristics, i.e. plant length, number of leaves/plant, leaf area and fresh and dry weight of roots and vegetative growth. Also, salicylic acid treatments increased crown carbohydrate, leaf phosphorus, soluble solid content of fruits and early and total yields/plant, while leaf chlorophyll content was decreased. There was no significant effect for the tested treatments on nitrogen and potassium contents of leaves and fruit quality characters, i.e. fruit firmness, titratable acidity, SSC/ titratable acidity and ascorbic acid. The most effective treatment was found to be salicylic acid at 2.0 mM three times.

Mycorrhiza inoculation to strawberry roots significantly increased all recorded data of vegetative characteristics, e.g. plant length, number of leaves per plant, fresh and dry weights of both roots and vegetative growth, crown total carbohydrates content and NPK percentages of leaves compared with the control treatment during both seasons. Also, the mycorrhiza inoculation increased leaf area, chlorophyll content of leaves, average fruit weight and early and total yields/plant. Moreover, root colonisation by the mycorrhiza inoculation enhanced the quality characteristics of strawberry fruits, although these increases were not significant compared with thecontrol treatment in both seasons.

Key words: Strawberry, *Fragaria* x *ananassa* Duch., Chitosan, Seaweed, Salicylic acid, Mycorrhiza, Growth, Yield, Earliness.

ACKNOWLEDGEMENT

First of all: Thanks to Allah for offering me the strength to fulfill this hard mission

I'm deeply indebted to **Professor Dr. Mohamed Emam Ragab,** Professor of Vegetable Crops and vice dean for community service and development of environment affairs, Faculty of Agriculture, Ain Shams University for suggesting the current study, supervision and continuous guidance. Also, I would like to thank him for his kind support and revision of the manuscript of this thesis.

I'm grateful to **Dr. Salah El-Deen Mahmoud El-Miniawy,** Associate Professor of Vegetable Crops, Faculty of Agriculture, Ain Shams University for his supervision, great support and continued help during the preparation of this work.

I'm deeply indebted to **Dr. Sabry Mousa Soliman Youssef** Associate Professor of Vegetable Crops, Faculty of Agriculture, Ain Shams University for his kind supervision, patriotic patience, energetic guidance, valuable advices in preparing and for writing and revision of the manuscript. I will always remember his generous help.

I would like to thank **Dr. Manal Moubarak Mohamed Mostafa** Lecturer of Plant Nutrition, Faculty of Agriculture, Ain Shams University for her great help and support.

Also I wish to express my deep thanks to my wife and my daughter for their kind encouragement and sincere help.

Sincere thanks and gratitude are due to my **brothers**, **Emad El-Din Abdel-Fattah**, Researcher, Fruit Breeding, Dept., Horticulture Res. Inst., ARC and **Khaled Abdel-Fattah**, Demonstrator of Genetics Dept., Faculty of Agriculture, Ain Shams University for their unlimited support.

Finally, I am indebted as gift to my **parents** for their continuous encouragement and praying for me.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	IX
ABBREVIATIONS	X
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Effect of chitosan application	3
2.1.1. Effect of chitosan foliar spray on vegetative growth	
characteristics	5
2.1.2. Effect of chitosan foliar spray on yield components	7
2.1.3. Effect of chitosan foliar spray on fruit quality	8
2.2. Effect of seaweed-extract application	9
2.2.1. Effect of foliar application of seaweed extract on	
vegetative growth characteristics	11
2.2.2. Effect of foliar application of seaweed extract on	
yield components	12
2.2.3. Effect of foliar application of seaweed extract on	
fruit quality	14
2.3. Effect of salicylic acid application	14
2.3.1. Effect of salicylic acid foliar spray on vegetative	
growth characteristics	16
2.3.2. Effect of salicylic acid foliar spray on yield	
components	18
2.3.3. Effect of salicylic acid foliar spray on fruit quality	19
2.4. Effect of mycorrhiza inoculation	19
2.4.1. Effect of mycorrhizal inoculation on vegetative	
growth characteristics	23

2.4.2. Effect of mycorrhizal inoculation on yield
Components
2.4.3. Effect of mycorrhizal inoculation on fruit quality
3. MATERIALS AND METHODS
3.1. Plant material and cultivation
3.2. Experimental design
3.3. Data recorded
3.3.1. Vegetative growth characteristics
3.3.2. Chlorophyll measurements
3.3.3. Crown carbohydrate determination
3.3.4. Mineral analysis of leaves
3.3.5. Yield components
3.3.6. Fruit quality
3.4. Statistical analysis
4. RESULTS AND DISCUSSION
4.1. Effect of chitosan foliar spray
4.1.1. Vegetative growth characteristics
4.1.2. Chlorophyll content of leaves
4.1.3. Crown carbohydrate content
4.1.4. Mineral analysis of leaves
4.1.5. Yield components
4.1.6. Fruit quality
4.2. Effect of seaweed-extract foliar spray
4.2.1. Vegetative growth characteristics
4.2.2. Chlorophyll content of leaves
4.2.3. Crown carbohydrate content
4.2.4. Mineral analysis of leaves
4.2.5. Yield components

4.2.6. Fruit quality	53
4.3. Effect of salicylic acid foliar spray	56
4.3.1. Vegetative growth characteristics	56
4.3.2. Chlorophyll content of leaves	60
4.3.3. Crown carbohydrate content	60
4.3.4. Mineral analysis of leaves	60
4.3.5. Yield components	63
4.3.6. Fruit quality	65
4.4. Effect of mycorrhiza inoculation	67
4.4.1. Vegetative growth characteristics	67
4.4.2. Chlorophyll content of leaves	69
4.4.3. Crown carbohydrate content	7 1
4.4.4. Mineral analysis of leaves	7 1
4.4.5. Yield components	71
4.4.6. Fruit quality	72
5. SUMMARY AND CONCLUSION	75
6. REFERENCES	80
7 ADARIC SUMMADV	

LIST OF TABLES

		Page
Table A	Physical and chemical properties of the 0–30 cm	
	soil layer in the experimental soil before	
	strawberry growth	30
Table B	The chemical composition of the commercial	
	chitosan (Chito-care) used	31
Table C	The chemical composition of commercial	
	seaweed-extract (Algreen) used	31
Table 1	Effect of foliar application of chitosan	
	concentrations with different number of	
	sprays on some vegetative growth characters of	
	cold-stored strawberry during 2009/2010 and	
	2010/2011 seasons	37
Table 2		0,
Tubic 2	concentrations with different number of sprays	
	• •	
	on root and vegetative growth weights of cold-	
	stored strawberry during 2009/2010 and	20
	2010/2011 seasons	38
Table 3	11	
	concentrations with different number of	
	sprays on leaf chlorophyll content and crown	
	carbohydrates of cold-stored strawberry	
	during 2009/2010 and 2010/2011 seasons	40
Table 4	Effect of foliar application of chitosan	
	concentrations with different number of sprays	
	on mineral analysis of cold-stored strawberry	
	leaves during 2009/2010 and 2010/2011 seasons	42

		Page
Table 5	Effect of foliar application of chitosan	
	concentrations with different number of sprays	
	on fruit weight and fruit yield of cold-stored	
	strawberry during 2009/2010 and 2010/2011	
	seasons	43
Table 6	Effect of foliar application of chitosan	
	concentrations with different number of sprays	
	on fruit quality of cold-stored strawberry during	
	2009/2010 and 2010/2011 seasons	45
T. 1.1. 7		43
Table 7	Effect of foliar application of seaweed extract	
	concentrations with different number of sprays	
	on some vegetative growth characters of cold-	
	stored strawberry during 2009/2010 and	
	2010/2011 seasons	47
Table 8	Effect of foliar application of seaweed extract	
	concentrations with different number of sprays	
	on root and vegetative growth weights of cold-	
	stored strawberry during 2009/2010 and	
	2010/2011 seasons	48
T 11 0		40
Table 9	Effect of foliar application of seaweed extract	
	concentrations with different number of sprays	
	on leaf chlorophyll content and crown	
	carbohydrates of cold-stored strawberry during	
	2009/2010 and 2010/2011 seasons	51

		Page
Table 10	Effect of foliar application of seaweed extract	
	concentrations with different number of sprays	
	on mineral analysis of cold-stored strawberry	
	leaves during 2009/2010 and 2010/2011 seasons	52
Table 11	Effect of foliar application of seaweed extract	
	concentrations with different number of sprays	
	on fruit weight and fruit yield of cold-stored	
	strawberry during 2009/2010 and 2010/2011	
	seasons	54
Table 12	Effect of foliar application of seaweed extract	
	concentrations with different number of sprays	
	on fruit quality of cold-stored strawberry during	
	2009/2010 and 2010/2011 seasons	55
Table 12		33
Table 15	Effect of foliar application of salicylic acid	
	concentrations with different number of sprays	
	on some vegetative growth characters of cold-	
	stored strawberry during 2009/2010 and	
	2010/2011 season	57
Table 14	Effect of foliar application of salicylic acid	
	concentrations with different number of sprays	
	on root and vegetative growth weights of cold-	
	stored strawberry during 2009/2010 and	
	2010/2011 seasons	58