THE ASSOCIATION BETWEEN SERUM ADIPONECTIN LEVELS AND THE SEVERITY OF CORONARY ARTERY DISEASE AS ASSESSED BY CORONARY ANGIOGRAPHY

Thesis

Submitted For Partial Fulfillment of the Master Degree in Cardiology

Presented By

Ayman Osama Khalil M.B.B.CH

Under Supervision of

Professor Doctor /

Mohammed Gamal Abd El-Barr


Professor of Cardiology Faculty of Medicine - Ain Shams University

Doctor /

Bassem El-Said Anany

Lecturer of Cardiology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2012

This work is dedicated to . . .

My beloved father, to whom I owe everything I ever did in my life and will achieve, may ALLAH put peace on his soul

My mother for always being there for me

My brothers and my sister for their support

Finally my wife and my lovely son (Ali) for being the light of my life

hanks first and last to Allah who guided me to the straight path and to his great care, support and guidance in every step in my life.

I would like to express my deepest gratitude and full appreciation to **Prof. Dr. Mohammed Gamal Abd El-Barr**, Professor of Cardiology, Faculty of Medicine, Ain Shams University who offered me the fatherly encouragement, generous supervision and for his continuous unlimited support.

I wish to offer my deepest thanks to **Dr. Bassem El-Said**Anany, Lecturer of Cardiology, Faculty of Medicine, Ain
Shams University for his trustful help, advice and supervision
and to his patience with me.

Special thanks to **Dr. Annal Ahmed Abbas**, Assistant Professor of Clinical Pathology, Faculty of medicine, Ain Shams University for giving me the chance to work under her supervision, and for her kind cooperation, valuable aid, and advice.

Many thanks to **Dr. Khaled El-Mady**, Lecturer of Cardiology, Military Medical Academy for his continuous assistance, kind cooperation and advice.

I would like to express my deepest respect and gratitude to my family, my senior staff and colleagues for their continuous help and encouragement throughout this work and in other aspects of my life. Lastly, my special thanks to all the persons who were the subjects of this study, and all who helped me throughout this work.

Ayman Osama Khalil (2012)

List of Contents

Title	Page No.
Introduction	1
Aim of the Work	4
Review of Literature	
Coronary Artery Disease	5
 Coronary Angiography As A Diagnostic Tool I Coronary Atherosclerosis 	
Adiponectin	64
Patients And Methods	93
Results	102
Discussion	127
Limitations of the Study	137
Conclusion	139
Recommendations	140
Summary	142
References	145
Master Tables	179
Arabic Summary	

List of Abbreviations

3q27	Chromosome 3 long arm band 27			
ACC	American college of cardiology			
ACE	Angiotensin converting enzyme			
Acrp 30	Adipocyte complement-related protein of 30 kDa			
ACS	Acute coronary syndrome			
AdipoR	Adiponectin receptor			
AHA	American Heart Association			
AMPK	AMP activated protein kinase			
ANOVA test	Analysis of variance test			
apM1	Adipose most abundand gene transcript 1			
apo	apo lipoprotein			
BMI	Body mass index			
CA	Coronary angiogram			
CABG	Coronary artery bypass grafting			
CAD	Coronary artery disease			
CIMT	Common carotid artery intima-media thickness			
COX	Cyclooxygenase			
CRP	C-reactive protein			
CVD	Coronary vascular disease			
\mathbf{D}_1	First diagonal branch of LAD artery			
\mathbf{D}_2	Second diagonal branch of LAD artery			
DM	Diabetes millitus			
ECG	Electrocardiogram			
ELISA	Enzyme linked immunosorbant assay			
eNOS	Endothelial nitric oxide synthase			
FC	Fibrous cap			
GBP28	Gelatin-binding protein of 28 kDa			
HDL	High density lipoprotein			
HMG-COA	3-hydroxy-3- methylglutaryl coenzyme A			
HMW	High- molecular weight			

НОРЕ	Heart Outcome Prevention Evaluation
HS	Highly significant
hs- CRP	High sensitivity CRP
HTN	Hypertension
ICAM	Intercellular adhesion molecule
IL	Interleukin
IVUS	Intra vascular ultrasound
kDa	Kilodalton
LAD	Left anterior descending artery
LCX	Left circumflex artery
LDL	Low density lipoprotein
LM	Left main coronary artery
LP	Lipoprotein
LV	Left ventricle
LVEDP	Left ventricle end diastolic pressure
MACR	Macrophage
MAPK	Mitogen- activated protein kinase
MCP-1	Monocyte chemoattractant protein-1
MGS	Modified Gensini score
MI	Myocardial infarction
MMP	Matrix metalloproteinase
MP	Myeloproliferative
MPI	Myocardial perfusion imaging
mRNA	Messenger ribonucleic acid
MVD	Multi vessel disease
mm	Millimeter
mm ²	Milimeter square
NO	Nitric oxide
NPV	Negative predictive value
NS	Non significant
PCI	Percutaneous coronary intervention
PDGF	Platelet-derived growth factor
PDS	Percentage diameter stenosis

PPAR	Peroxisome proliferator activated receptor
PPV	Positive predictive value
QCA	Quantitative coronary angiography
r	Linear Correlation Coefficient
RCA	Right coronary artery
RIO-Lipids study	Rimonabant in Obesity-Lipids study
ROC	Receiver operating characteristic curve
ROS	Reactive oxygen species
rpm	Rounds per minute
RT	Room temperature
SAPHIR study	Salzburg Atherosclerosis Prevention Program in subjects at High Individual Risk study
SD	Standard deviation
SE	Standard error
SMCs	Smooth muscle cells
SPSS	Self Propelled Semi-Submersible
SR-As	Class A scavenger receptors
STEMI	ST-segment elevation myocardial infarction
SVD	Single vessel disease
TIMI	Thrombolysis in myocardial infarction
TNF	Tumor necrosis factor
TNF-α	Tumor necrosis factor- alpha
TVD	Two vessel disease
VCAM-1	Vascular cell adhesion molecule-1

List of Tables

Table No.	Title Page No.
Table (1):	Features associated with plaque rupture19
Table (2):	AHA classification of atherosclerosis
Table (3):	Characteristics of ACC/ AHA type A,B,C coronary lesions
Table (4):	Comparison between the two groups according to the age
Table (5):	Comparison between the two groups according to the sex
Table (6):	Comparison between the two groups according to hypertension106
Table (7):	Comparison between the two groups according to smoking
Table (8):	Comparison between the two groups according to BMI108
Table (9):	Comparison between the two groups according to serum adiponectin level 109
Table (10):	Comparison between the two groups according to serum level of hs CRP110
Table (11):	Comparison between patient and control groups
Table (12):	Comparison between the three subgroups according to the age
Table (13):	Comparison between the three subgroups according to the sex

List of Tables (cont...)

Table No.	Title	Page No.
Table (14):	Comparison between the three subgreaccording to hypertension	-
Table (15):	Comparison between the three subgreaccording to smoking	-
Table (16):	Comparison between the three subgreaccording to BMI.	-
Table (17):	Comparison between the three subgreaccording to serum adiponectin level.	-
Table (18):	Comparison between the three subgreaccording to modified Gensini score	-
Table (19):	Comparison between the three subgreaccording to serum level of hs CRP	-
Table (20):	Correlation between serum adiponel levels vs. age, BMI, hs-CRP and MGS.	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Front view of the heart with macoronary arteries.	
Figure (2):	Histological picture of arterial wall	9
Figure (3):	The response to injury hypothesis atherosclerosis	
Figure (4):	Vascular remodeling	16
Figure (5):	Effect of vessel remodeling discrepancies between pathology angiography	
Figure (6):	Characteristics of vulnerable plaques	19
Figure (7):	Eccentric (left) and concentric (right) lumen morphology.	_
Figure (8):	Compound effect of vasospasm on lumorphology.	
Figure (9):	Stages of atherosclerosis progression	28
Figure (10):	Light micrograph of a fibrofatty plaque in the coronary artery	
Figure (11):	Natural history of atherosclerosis38	
Figure (12):	Schematic representation of the phase atherosclerotic lesion progression, and associated pathologic lesion types clinical syndromes	the and
Figure (13):	Coronary pathology in acute coron syndrome.	•

List of Figures (cont...)

Fig. No.	Title	Page No.
Figure (14):	A12-lead ECG example of ische antero-lateral ST-segment depression patient with known CAD.	in a
Figure (15):	Coronary remodeling.	56
Figure (16):	Gensini score	58
Figure (17):	Structure and domains of adiponectin.	67
Figure (18):	Proposed structure of adiponer receptors and their expression in variatissues	ious
Figure (19):	Molecular mechanisms of adipone action	
Figure (20):	Metabolic syndrome, visceral fat hypoadiponectinemia.	
Figure (21):	Adiponectin and cardiovascular system	n75
Figure (22):	Anti-inflammatory effect of adiponection	n81
Figure (23):	Adiponectin as a molecular regulator atherosclerosis	
Figure (24):	Comparison between the two groaccording to the age	
Figure (25):	Comparison between the two groaccording to the sex	-
Figure (26):	Comparison between the two groaccording to hypertension	_

List of Figures (cont...)

Fig. No.	Title	Page No.
Figure (27):	Comparison between the two greaccording to smoking.	_
Figure (28):	Comparison between the two groaccording to BMI.	_
Figure (29):	Comparison between the two greaccording to serum adiponectin level	_
Figure (30):	Comparison between the two greaccording to serum level of hs CRP	_
Figure (31):	Comparison between the three subgroaccording to the age.	_
Figure (32):	Comparison between the three subgroaccording to the sex	_
Figure (33):	Comparison between the three subgreaccording to hypertension	_
Figure (34):	Comparison between the three subgreaccording to smoking.	_
Figure (35):	Comparison between the three subgroaccording to BMI.	_
Figure (36):	Comparison between the three subgreaccording to serum adiponectin level	_
Figure (37):	Comparison between the three subgreaccording to modified Gensini score	-
Figure (38):	Comparison between the three subgroaccording to serum level of hs CRP	-

List of Figures (cont...)

Fig. No.	Title	Page No.
Figure (39):	Correlation between serum a levels and modified Gensini scor	-
Figure (40):	Correlation between serum as levels and hs-CRP.	-
Figure (41a)	Receiver-operating characterist curve for predicting CAD	
Figure (41b)	ROC curve for predicting CAD	126

Introduction

oronary artery disease (CAD) is now the leading cause of death worldwide, and it is expected that the rate of CAD will accelerate in the next decade. The global burden of CAD carries with it a heavy financial cost (*Lippy et al.*, 2008).

Recently, adipose tissue has shed its label as a sedentary storage depot of excess energy, and has emerged as a metabolically active participant mediating vascular in complications, serving as an active endocrine and paracrine organ secreting an ever increasing number of mediators, known as adipokines, which participate in diverse metabolic processes (Lau et al., 2005). Although most adipokines such as leptin, TNF-α, plasminogen activator inhibitor-1; appear to promote vascular disease, but among these adipokines is adiponectin which seems to possess antiatherogenic and anti-inflammatory effects and may be protective against cardiovascular disease development (Giannessi et al., 2007).

Surprisingly, obese subjects have significantly lower levels of plasma adiponectin when compared with non obese subjects, and the adiponectin levels are negatively correlated to body mass index (BMI) in both male and female subjects (Arita et al., 1999). The circulating adiponectin concentrations are correlated more negatively with visceral fat area than with