تطبيقات تقنية النانو في طب العيون

رسالة مقدمة من

الطبيبة / مروة أحمد محمد البغدادي بكالوريوس الطب و الجراحة

كلية الطب جامعة عين شمس

توطئة للحصول على درجة الماجستير في طب و جراحة العيون

تحت اشراف

الأستاذ الدكتور: محمود حمدي ابراهيم

أستاذ طب وجراحة العيون كلية الطب جامعة عين شمس

الدكتور: محمد أحمد رشاد

أستاذ مساعد طب وجراحة العيون كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس قسم طب و جراحة العيون القاهرة مصر (٢٠١٣)

Ophthalmic Applications of Nanotechnology

Essay
Submitted For Partial Fulfillment of Master
Degree in Ophthalmology

By

Marwa Ahmed Alboghdady

M.B., B.Ch., Faculty of Medicine-Ain Shams University

Supervised By

Prof.Dr. Mahmoud Hamdi Ibrahim

Professor of Ophthalmology Faculty of Medicine Ain shams University

Assistant Prof. Dr. Mohammad Ahmad Rashad

Assistant Prof. of Ophthalmology Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
Department Of Ophthalmology
Cairo
EGYPT
(2013)

Acknowledgements

It is pleasure to express my deepest gratitude to *Professor Dr. Mahmoud Hamdi Ibrahim*, Professor of ophthalmology, Faculty of Medicine, Ain Shams University, for his kind help, kind supervision, endless support, inspiring advices and encouragement throughout this work.

Sincere thanks to *Assistant Prof. Dr.Mohammad Ahmad Rashad*, Assistant Professor of ophthalmology, Faculty of Medicine, Ain Shams University, for his help and beneficial advices during this work.

List of Contents

List of Fig	ures	i
List of Tal	oles	iv
List of Abl	breviations	V
Acknowled	lgement	viii
Chapter (1): Definition and introduction	1
Defintion		1
Soluble Mac	romolecules	8
Dendrimers		9
Micelles		12
Nanoplexes		15
Nanoparticle	es	17
Liposomes		21
Nanorods, na	anotubes and nanofibers	25
Nanorobots .		27
Chapter (2	2): Role of nanotechnology in ophthalmic d	iagnosis24
Chapter	(3): Role of nanotechnology pharmacotheraputics	
I. Nanosus _l	pensions	35
II. Liposon	nes	37
III. Dendrii	mers	39
IV. Nioson	nes	44
V. Nanopa	rticles	45
1- Chitosan	Nanoparticles	46
2- Polylactic	acid Nanoparticles	50
3- Nanoparti	icles of Hyaluronic Acid	54

4- Albumin Nanoparticles	56
5- Solid lipid nanoparticles	57
6- Gold nanoparticles	59
7- Polylactic-co-glycolic acid	62
VI. Nanoparticles loaded contact lenses	
VII. Spanlastics	69
Chapter (4): Role of nanotechnology in ocular gene therapy	72
I. Nanoplexes	74
II. Liposomes	82
III. Dendrimers	85
IV. Hyalournic acid nanoparticles	6
V. Albumin nanoparticles	87
VI. PLGA nanoparticles	89
Chapter (5): Role of nanotechnology in ophthalmic devisurgery	
I. Nanotechnology applications in ophthalmic surgery	
II. Nanotechnology applications in ophthalmic devices	100
Summary	106
References	110
Arabic Summary	

List of Figures

	<u> </u>	r
Figure Number	Figure Title	Page
1	Nanosystems for ophthalmic applications	
2	Schematic representation of a dendrimer showing core, branches, and surface	9
3	Two principle synthetic methods for constructing dendrimers	10
4	Generations of dendrimers adopted from	12
5	types of micellar morphologies of block copolymers	14
6	Nanoshere &nanocapsule	18
7	A representation of the structure of a liposome	22
8	Schematic illustration of liposomes of different size and number of lamellae.	23
9	carbon nanotube	26
10	Distributions of aqueous colloidal quantum dots in the vitreous.	30
11	Aqueous colloidal quantum dots show the structure in vitreous at striking contrast.	31
12	Schematic diagram of nanosize carboplatin- loaded polyamidoamine dendrimer	39
13	Ocular tumor burden in bilateral murine transgenic retinoblastoma mice treated with subconjunctival nanoparticle carboplatin PBS	41
14	Representative sections showing intraretinal tumor in eyes	42

List of Figures (Cont.)

	List of Figures (Cont.)	
Figure Number	Figure Title	Page
15	Properties of chitosan that make it pharmaceutically acceptable biomaterial	46
16	Schematic presentation of mucoadhesive nature of chitosan	47
17	Twenty-four hours after intravitreous injection (a) Fluorescence microscopy of the retina	51
18	Flatmount RPE-choroid complex at 4 months after a single intravitreous injection of fluorescent nanoparticles	51
19	Oral treatment of Lodamin reduces CNV progression (a)Representative images of CNV lesions stained with a lectin-FITC in flat mount of mouse choroids	54
20	Ocular tissue distribution of ganciclovir- loaded albumin nanoparticles two weeks postintravitreal injection in rats	57
21	GDNF microspheres reduce the ONH excavation due to chronic intraocular elevation A shows the normal ONH architecture.	64
22	Effects of GDNF microspheres treatment on preservation of the thickness of inner plexiform layer after chronic IOP elevation	64

List of Figures (Cont.)

П	List of Figures (Conta)	1
Figure Number	Figure Title	Page
23	GDNF microspheres increased retinal ganglion cells and their axons survival F illustrates normal ON axons without IOP elevation.	56
24	GDNF microspheres decreased glial fibrillary acidic protein expression of retina glial fibrillary acidic protein expression.	56
25	GDNF microspheres decreased glial fibrillary acidic protein expression of optic nerve	66
26	Schematic illustration of a nanoparticle- loaded ophthalmic contact lens for sustained topical ophthalmic drug delivery.	67
27	Fluorescent splantics seen in cornea.	71
28	Representative Transmission electron microscopy images of PEI2-GNP-treated rabbit corneas.	80
29	Molecular model of the Self-assembling peptide nanofiber scaffold building block.	90
30	Self-assembling peptide nanofiber scaffold structure.	91
31	Self-assembling peptide nanofiber scaffold heals the brain in young animals.	92
32	Clinical outcomes of ocular surface reconstruction using autologous oral mucosal epithelial cell sheets.	98
33	Schematic of an artificial nano-drainage implant for glaucoma treatment.	100
34	Diagram of the contact lens sensor.	102
35	Set-up for measuring intraocular pressure in enucleated pig eyes with the contact lens sensor.	104

List of Tables

Table Number	Table Title	Page
1	Dimensions of various objects in nanoscale.	1
2	The historical landmarks in the evolution of nanomedicine .	3
3	Approximate Sizes of Components in a Typical 20-mm Human Tissue Cell	5
4	Classification of basic nanobiotechnologies.	7
5	Materials used for ophthalmic nanoparticles	16
6	examples of chitosan formulation in ocular drug delivery studies	49
7	Membrane design parameters	101

Abbreviations

AMD	age related macular degeneration
ARPE-19	human retinal pigment epithelial cells
AS-ODN-s	Antisense-oligonucleotides
AVE	artificial viral envelope
BRB	blood retinal barrier
CBA	chicken-beta actin
CCR3	cell chemokine receptor 3
cDNA	compacted- DNA
CK30-PEG	polyethylene glycol (PEG)-substituted lysine 30-mer
CL	cationic liposomes
CL-OG	cationic liposomes - Oregon green
CL-ICG	cationic liposomes-indocyanine green
CMV	Cytomegalovirus promoter
CNV	choroidal neovascularization
DC- cholesterol	dimethylaminoethane- carbamoylcholesterol)
DOPE	1,2,-dioleoyl-3-phosphatidylethanolamine
DOTAP	1,2-Dioleoyl-3- trimethylammonium propane
FITC	flurescein isothiocyanate
G	generation
GDNF	glial cell line-derived neurotrophic factor

GFAP	glial fibrillary acidic protein
GUVs	Giant unilamellar vesicles
HSA	human serum albumin
HMG1	high mobility group 1 non-histone nuclear protein
HVJ	hemagglutinating virus of Japan
ICG	indocyanine green
IOBA-NHC	normal human conjunctival cells
IRBP	interphotoreceptor retinoid binding protein
kDa	kiloDaliton
LacZ gene	encodes the beta-galactosidase protein
LCA	Leber's congenital amaurosis
MEMS	Microelectromechanical systems
MOP	mouse opsin promoter
NEMS	nanoelectromechanical systems
NMP	normal mouse peripherin /rdsq
OG	Oregon green
P	postnatal day
pDNA	plasmid DNA
PEI2-GNPs	2-kDa polyethylenimine conjugated to gold nanoparticles
PI	post injection day
RDS	retinal degeneration slow protein

RGCs	retinal ganglion cells
Rh	Rhodamine
RPE65	RPE-specific protein 65 KDa
SEAP	secreted alkaline phosphatase
SOD1	Superoxide Dismutase1 enzyme
SV	simian virus
TGF-β2	transforming growth factor–β2
TMAG	N-αtrimethylammonioacetyl- didodecyl-D-glutamate)
VMD2	RPE-specific vitelliform macular dystrophy 2
VEGF	vascular endothelial growth factor

Definition

Nanotechnology (Greek word nano means 'dwarf') is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer lengthscale, i.e., at the level of atoms, molecules, and supramolecular structures. It is the popular term for the construction and utilization of functional structures with at least one characteristic dimension measured in nanometer scale. A nanometer (nm) is one billionth of a meter (10⁻⁹m). This is roughly four times the diameter of an individual atom and the bond between two individual atoms is 0.15nm long. (Table 1) (*Jain*, 2008) and (*Zarbin et al.*, 2012).

Object	Dimension (nm)
Width of a hair	50,000
Vesicle in a cell	200
Bacterium	1,000
Virus	100
Exosomes (nanovesicles	65–100
shed by dendritic cells)	
Width of DNA	2.5
Ribosome	2–4
A base pair in human	0.4
genome	
Amino acid (e.g., tryptophan, the	1.2 (longest measurement)
largest)	
Aspirin molecule	1
An individual atom	0.25

Table (1): Dimensions of various objects in nanoscale (Jain, 2008).

Nanotechnology is not in itself a single emerging scientific discipline. It is a meeting of traditional sciences such as chemistry, physics, materials science, and biology to bring together the required collective expertise needed to develop these novel technologies (Shrivastava and Dash, 2009).

Nanomedicine is a subfield of nanotechnology. It has been defined as "the monitoring, repair, construction, and control of human biological systems at the molecular level, using engineered nanodevices and nanostructures (*Morrow and Bawa*, 2007).

This term was used in publications in 1998 (*Jain*, 2008).

Table 2 lists the historical landmarks in the evolution of nanomedicine.

Year	Landmark
1905	Einstein published a paper that estimated the diameter of a sugar
	molecule as about 1 nm
1931	Max Knoll and Ernst Ruska discovered the electron microscope—
	enables subnanomolar imaging
1959	Nobel Laureate Richard Feynman gave a lecture entitled "There's
	Plenty of Room at the Bottom," at the Annual Meeting of the American
	Physical Society. He outlined the principle of manipulating individual
	atoms using larger machines to manufacture increasingly smaller
	machines
1974	Norio Tanaguchi of Japan coined the word "nanotechnology"

1979	Colloidal gold nanoparticles used as electron-dense probes in electron
1515	microscopy and immunocytochemistry
1981	Conception of the idea of designing molecular machines analogous to
1,01	enzymes and ribosomes
1987	Cancer targeting with nanoparticles coated with monoclonal
2507	antibodies
1988	Maturation of the field of supramolecular chemistry relevant to
2500	nanotechnology:construction of artificial molecules that interact with
	each other leading to award of the Nobel prize.
1990	Atoms visualized by the scanning tunneling microscope discovered in
	the 1980s at the international business corporation Zürich Laboratory
	(Zürich, Switzerland), which led to the award of a Nobel Prize
1991	Discovery of carbon nanotubes
1995	Food and drug assosiation approved Doxil, a liposomal formulation of
	doxorubicin, as an intravenous chemotherapy agent for Kaposi's
	sarcoma. Drug carried by nanosize liposomes is less toxic with targeted
	delivery
1998	First use of nanocrystals as biological labels, which were shown to be
	superior to existing fluorophores
2000	First food and drug approval of a product incorporating the
	NanoCrystal R _ technology (Elan, King of Prussia, PA, USA), a solid-
	dose formulation of the immunosuppressant sirolimus—Rapamune R _
	Wyeth)
2003	National Nanotechnology Initiative announced in the United States.
2003	The United States Senate passed the Nanotechnology Research and
	Development Act, making the National Nanotechnology Initiative a legal
	entity, and authorized.
2005	Food and drug association approved AbraxaneTM, a taxane based on
	nanotechnology, for the treatment of breast cancer. The nanoparticle
	form of the drug overcomes insolubility

Table (2): The historical landmarks in the evolution of nanomedicine (*Jain*, 2008).