MOLECULAR STUDIES ON GENE TYPES RESISTANT TO POTATO VIRUS Y

HEBA AMIN MAHFOUZE AFIFI

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2002M.Sc. Agric. Sc. (Virology), Ain Shams University, 2008

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Agric. Virology)

Department of Agric. Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

MOLECULAR STUDIES ON GENE TYPES RESISTANT TO POTATO VIRUS Y

By

HEBA AMIN MAHFOUZE AFIFI

This thesis for Ph.D. degree has been approved by:

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2002 M.Sc. Agric. Sc. (Virology), Ain Shams University, 2008

Dr. Samir A. Sidaros Prof. of Plant Pathology, Faculty of Agriculture, Kafr El-Sheikh University Dr. Esmat K. Allam Prof. of Agricultural Virology, Faculty of Agriculture, Ain Shams University Dr. Badawi A. Othman Prof. Emeritus of Agricultural Virology, Faculty of Agriculture, Ain Shams University Dr. Khalid A. El-Dougdoug Prof. of Agricultural Virology, Faculty of Agriculture, Ain Shams University

Data of Examination: 26 / 12 / 2012

MOLECULAR STUDIES ON GENE TYPES RESISTANT TO POTATO VIRUS Y

By

HEBA AMIN MAHFOUZE AFIFI

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2002 M.Sc. Agric. Sc. (Virology), Ain Shams University, 2008

Under the supervision of:

Dr. Khalid A. El-Dougdoug

Prof. of Agricultural Virology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University (Principal Supervision)

Dr. Badawi A. Othman

Prof. Emeritus of Agricultural Virology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University

Dr. Mostafa A.M. Gomaa.

Prof. Emeritus of Genetics, Department of Genetics and Cytology, Division of Genetic Engineering and Biotechnology, National Research Centre

ABSTRACT

Heba A. Mahfouze: Molecular Studies on Resistant Gene Types to Potato Virus Y. Unpublished Ph.D. thesis, Dept. Agric. Microbiology, Faculty of Agric., Ain Shams University, 2013.

The primary objective of this study was the development of an easily adaptable technology for controlling *Potato virus Y* (PVY^{NTN}) by the preinoculation application of *Phytolacca* sp. and *M. jalapa* extracts on five potato (*Solanum tuberosum* L.) cultivars ('Selan', 'Spunta', 'Cara', 'Diamond', and 'Nicola').

Antiviral proteins (AVPs), also referred to as ribosome inactivating proteins (RIPs), are an extended, fairly heterogeneous group of plant proteins which confer resistance against different viruses when applied exogenously or expressed in transgenic lines. These have been identified in a number of plant species such as pokeweed (*Phytolacca americana*, *P*. acinosa), and "the marvel of Peru" (Mirabilis jalapa). Leaf extracts from Phytolacca sp. and M. jalapa leaves were blended in dsH₂O (1: 5, w/v) and sprayed on the five potato cultivars before virus inoculation, inhibiting infection by almost 100%, as corroborated by DAS-ELISA. SDS-PAGE was used to detect antiviral proteins in P. americana, P. acinosa and M. jalapa, in addition to studying genetic variability among healthy, resistant and infected potato cultivars through the quantitative and qualitative determination of total proteins. Monomorphic band with molecular weights 11 kDa appeared in AVP-treated potato leaves. In addition, another common band at 28.5 kDa induced in potato tubers resulted from AVP-treated potato plants and disappeared in non-AVPtreated potato plants and the control. On the other hand, the highest PPO and POD activities appeared in AVP-treated potato plants of Cara (three bands), the lowest isozyme activities showed into Spunta (one), whenever the other cultivars were equally in number of bands (two). Otherwise, the maximum PPO and POD activities appeared in non-AVP-treated potato plants of Spunta (six bands). Followed by, Nicola (four), the minimum

isozyme activities showed into Selan and Cara (two), whenever Diamond cultivar was scored (three) bands. Changes in DNA caused by AVPtreated potato cultivars resulted genetic variations detected by ISSR-PCR analysis were performed using five random primers compared to PVYNTN infected plants and the healthy control. A total of 63 scorable amplified DNA fragments ranging from 90 to 1105 bp were observed using these primers, 43 of which were polymorphic while the others were monomorphic. The five primers showed mean polymorphic percentage of 68.25%. The extent of polymorphism per primer ranged from 87.50% (ISSR-1) to 33.33% (ISSR-4). Among the 43 polymorphic bands, 20 bands were unique markers with a total average of 31.74%. The AVPtreated potato cultivars varied considerably in banding patterns using the five ISSR-PCR primers. 'Selan' had the highest number of unique markers (10), followed by 'Nicola' (9), 'Spunta' (5), 'Diamond' (1) and 'Cara' (0). Leaf extracts from P. americana, P. acinosa and M. jalapa could be used in simple crop-protection agricultural systems by spraying these extracts on leaves of various crops to prevent or control viral infection. The fragments of PAP-I gene isolated from P. americana and P. acinosa leaves using specific primers A and B were 1188 and 868 bp, respectively. The RNAs were reverse transcribed by MMLV reverse transcriptase. The resulting cDNA was amplified by PCR after adding specific primer-C for PAP-II gene. DNA amplifed from P. americana and P. acinosa leaves was 855 bp. The PCR product (868 bp) of PAP-I gene amplified from the genomic DNA of americana leaves using specific primer-B was eluted from the gel, purified, further amplified and cloned in a pTZ57R/T vector and mobilized into E. coli DH5 α competent cells. White ampcillin colonies were selected for plasmid minipreparation using the plasmid minipreparation techniques.

Key words: *Phytolacca americana*, *P. acinosa*, *Mirabilis jalapa*, SDS-PAGE, Polyphenol oxidase, Peroxidase isozymes, ISSR-PCR, *PAP* genes, nucleotide sequence.

CONTENTS

	Page
LIST OF TABLES	iv
LIST OF FIGURES	vii
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
III. MATERIALS AND METHODS	31
1. Plant materials	31
1.1. Phytoantiviral Plants	31
1.2. Source of PVY ^{NTN} strain	31
1.3. Propagation of PVY ^{NTN} strain	31
2. Preventive treatment phytoantiviral extract	33
2.1. Plant extract	33
2.2. Inhibitory activity of phytoantiviral extract against	
PVY ^{NTN}	33
2.3. Residual effect of the phytoantiviral extract	34
2.4. Enzyme-linked immunosorbent assay (DAS-ELISA)	34
3. Biochemicals markers	35
3.1. SDS-PAGE electrophoretic analysis	35
3.2. Polyphenol oxidase (PPO) and peroxidase (POD)	
isozymes electrophoresis	38
3.2.1. Polyphenol oxidase (PPO) isozyme staining	
solution	39
3.2.2. Peroxidase (POD) isozyme staining solution	39
4. Molecular marker	40
4.1. DNA extraction from potato leaves	40
4. 2. Inter Simple Sequence Repeats (ISSR) analysis.	40
5. Extraction of total RNA	42
5.1. cDNA synthesis	42
6. Design specific primers for detection of <i>PAP-I</i> and <i>PAP-II</i>	
genes	43

6.1. Design specific primers for full length PAP-I
gene
6.2. Design specific primers for full length <i>PAP-II</i> gene
6.3. PCR using specific primers
7. Agarose gel electrophoresis
8. Cloning and transformation into pTZ57R/T vector
8.1. Gene cleaning
8.2. Ligation
8.3. Transformation Protocol from Overnight Bacterial
Culture (for 2 transformations)
8.4. Transformation into <i>E. coli</i> DH5 α
9. Plasmid Miniprep
10. Confirmation by restriction analysis
11. DNA sequencing of <i>PAP</i> gene
IV. RESULTS
-Propagation of PVY ^{NTN} strain
Part I: Expression characteristics of potential phytoantiviral
1. Inhibitory activity of phytoantiviral extract against PVY ^{NTN}
2. Stability of antiviral effect.
3. Functional expression of potato cultivars treated with
antviral proteins (AVP)
3.1. Protein analysis of AVP and non-AVP-treated potato
leaves
3.2. Protein analysis of tubers resulted from AVP and non-
AVP-treated potato cultivars
3.3. Isozyme profiles of AVP-treated and non-AVP-
treated potato leaves
3.3.1 Polyphenol oxidase (PPO) isozymes
3.3.2 Peroxidase (POD) isozymes
4. ISSR-PCR profiles
4.1. ISSR-PCR analysis using primer-1

4. 2. ISSR-PCR analysis using primer-2	71
4.3. ISSR-PCR analysis using primer-3	72
4.4. ISSR-PCR analysis using primer-4	76
4.5. ISSR-PCR analysis using primer-5	78
Part II: Isolation of PAP-I and PAP-II genes	83
1. Amplification of <i>PAP-I</i> gene	83
2. Amplification of <i>PAP-II</i> gene	83
2.1 Extraction of total RNA	83
2.2 RT-PCR of <i>PAP-II</i> gene	83
3. Cloning and transformation of PAP-I gene into	
pTZ57R/T cloning vector	83
4. Confirmation of clones.	86
5. Sequence homology	86
6. Statistical analysis of alignment sequence	96
7. Protein statistics of amino acids alignment	98
V. DISCUSSION	101
VI. ENGLISH SUMMARY	110
VII. REFERENCES	115
VIII Index	
IX Arabic summary	

LIST OF TABLES

Table No.	Page
(1). Symptoms of PVY strains in potato and their potential to reduce	
yield	3
(2). The five ISSR primers used in the study and their sequences	41
(3). Characteristics of designed primers specific to PAP-I and	
PAP-II genes resistant to PVY	44
(4). DAS-ELISA of the healthy control, AVP-treated and non-	
AVP treated plants of five potato cultivars	54
(5). Protection periods against PVY ^{NTN} infection by the AVP	
extracts	57
(6). SDS-PAGE binding patterns of AVP-treated, non-AVP-	
treated potato leaves and the healthy control	60
(7). SDS-PAGE binding patterns of potato tubers resulted from	
AVP-treated, non-AVP-treated potato plants and the	
healthy control	64
(8). Specific protein markers induced in AVP-treated five potato	
cultivars	65
(9). PPO-ioszyme patterns of AVP-treated, non-AVP-treated	
leaves of five potato cultivars, compared with the healthy	
ones	68
(10). POD-ioszyme patterns of AVP-treated, non-AVP-treated leaves	
of five potato cultivars compared with the healthy	
ones	68
(11). PPO and POD ioszyme markers of the AVP-treated and	
non-AVP treated plants of five potato cultivars	69
(12). ISSR-PCR analysis for AVP-treated, non-AVP-treated	
potato plants of five cultivars and the healthy control	
using primer-1	73
(13). ISSR-PCR analysis for AVP-treated, non-AVP-treated	
potato plants of five cultivars and the healthy control	

using primer-2	74
(14). ISSR-PCR analysis for AVP-treated, non-AVP-treated	
potato plants of five cultivars and the healthy control	
using primer-3	75
(15). ISSR-PCR analysis for AVP-treated, non-AVP-treated	
potato plants of five cultivars and the healthy control	
using primer-4	77
(16). ISSR-PCR analysis for AVP-treated, non-AVP-treated	
potato plants of five cultivars and the healthy control	
using primer-5	79
(17). ISSR amplified bands, polymorphic bands and unique	
markers for AVP-treated potato cultivars using five	
primers	80
(18). Summerized results of biochemical and molecular markers	
represented the induced bands (specific markers) for	
AVP-treated and non-AVP-treated potato cultivars	82
(19). Sequences alignments of <i>PAP-Heba</i> gene using BLAST	
analysis	95
(20). Statistical analysis of alignment sequence	96
(21). Illustrated the comparison of statistical analysis for	
alignment sequence <i>PAP-Heba</i> and four antiviral proteins	
available of GenBank	98
(22) Amino acids counts of PAP-Heba with those of the other	
antiviral proteins	99
(23). Amino acids frequencies of PAP-Heba with those of the	,,
other antiviral proteins	100
omer and that proteins	100

LIST OF FIGURES

Fig. No.	P
(1).Catechol oxidase (PPO) catalyzes the oxidation of catechol	
to benzoquinone. The oxidation product is used to	
synthesize melanins.	2
(2).Polyphenol oxidase (PPO) catalyzes the oxidation of	
catechol to o-quinine. The oxidation product is used to	
synthesize melanins	2
(3). The morphological shape of P. americana (a), P. acinosa	
(b) and Maribla jalapa (c) plants	3
(4).Illustrated map of the pTZ57R/T cloning vector	
(manufacture by Fermentas, Vilnius, Lithuania)	4
(5).(H) The healthy D. metel L. plants and PVY ^{NTN} infected	
D. metel L. plants showing vein clearing, leaf curl and	
mosaic symptoms (I)	4
(6). SDS-PAGE (12.5%) showing total soluble-proteins	
extracted from leaves and seeds of phytolacca sp. in the	
spring season and tissue-specific expression of PAP-I and	
PAP-S. Lane M= marker protein, lane1= P. americana and	
lane 2= P. acinosa.	4
(7).SDS-PAGE (12.5%) showing total soluble-proteins	
extracted from leaves (lane1) and seeds (lane 2) of M. jalapa	
L. in the spring season and tissue-specific expression of	
PAP-I and PAP-S. Lane M= marker protein	4
(8). Leaves of potato plant cv. Cara treated with AVP extract	
(AVP+ PVY ^{NTN}) compared with PVY ^{NTN} inoculated ones	
and the healthy control	5
(9). Leaves of potato plant cv. Selan treated with AVP extract	
(AVP+ PVY ^{NTN}) compared with PVY ^{NTN} inoculated ones	
and the healthy control	5
(10). Leaves of potato plant cv. Nicola treated with AVP extract	

(AVP+ PVY ^{NTN}) compared with PVY ^{NTN} inoculated	
ones and the healthy control	56
(11). SDS-PAGE (12.5%) analysis of total soluble protein	
fractions for AVP-treated potato leaves and non-AVP-	
treated ones (PVYNTN infected) compared with the control	
(lane C). Lane M= Marker protein	59
(12). SDS-PAGE (12.5%) analysis of total soluble protein	
fractions for potato tubers resulted of AVP-treated potato	
cultivars and non-AVP-treated ones (PVYNTN infected)	
compared with the control (lane C). Lane M= Marker	
protein	63
(13). PPO-isozyme polymorphism profiles of AVP-treated five	
potato cultivars and non-AVP-treated ones compared with	
the healthy control (lane C)	67
(14).POD-isozyme polymorphism profiles of AVP-treated five	
potato cultivars and non-AVP-treated ones compared	
with the healthy control (lane C)	67
(15). ISSR-PCR analysis of AVP-treated potato cultivars using	
primer-1 compared to PVYNTN infected plants and the	
healthy control (lane C). Lane $M = 100$ bp DNA ladder	73
(16). ISSR-PCR analysis of AVP-treated potato cultivars using	
primer-2 compared to PVYNTN infected plants and the	
healthy control (lane C). Lane $M = 100$ bp DNA ladder	74
(17). ISSR-PCR analysis of AVP-treated potato cultivars using	
primer-3 compared to PVYNTN infected plants and the	
healthy control (lane C). Lane $M = 100$ bp DNA ladder	75
(18). ISSR-PCR analysis of AVP-treated potato cultivars using	
primer-4 compared to PVYNTN infected plants and the	
healthy control. Lane $M = 100$ bp DNA ladder	77
(19).ISSR-PCR analysis of AVP-treated potato cultivars using	
primer-5 compared to PVYNTN infected plants and the	
healthy control (lane C). Lane $M = 100$ bp DNA ladder	٧9

(20). Agrose gel 1% showed PCR amplification of <i>PAP-I</i> gene	
using specific primer-A. The size of DNA fragments is	
indicated 1188 base pairs. Lane M: 1 Kb Ladder DNA size	
marker, lane 1: PAP-I gene obtained from P. americana	
plant and lane 2: PAP-I gene obtained from P. acinosa	
plant	8
(21). Agrose gel 1% showed PCR amplification of PAP-I gene	
isolated from P. americana and P. acinosa plants using	
specific primer-B. The size of DNA fragments is indicated	
to the left of the picture in base pairs. Lane M: 1 Kb	
Ladder DNA size marker.	
(22). Analysis of total RNA from leaves of <i>P. americana</i> (lane	
1) and <i>P. acinosa</i> (lane 2) on 1% agarose gel and detected	
by ethidium bromide staining	
(23). Agrose gel 1% showed PCR amplification of PAP-II gene	
using specific primer-C. The size of DNA fragments is	
indicated to the left of the picture in base pairs lane M: 1	
Kb Ladder DNA size marker, lane 1: PCR product of	
PAP-II from P. americana plant and lane 2: PCR product	
of PAP-II from P. acinosa plant	
(24). LB medium in plate showed transformants in <i>E. coli</i> were	
selected by white-blue colonies B= Blue colonies and	
W=White colonies	
(25). Screening of plasmid pTZ57R/T transformed in E. coli	
colonies by plasmid minipreparation using PCR in the	
presence of PAP-I specific primer for PAP-I gene.	
Electrophoresis was performed on 1% agrose gel stained	
with ethidium bromide. The insert DNA contains the PAP-	
I gene fragment from white colonies (lanes 1, 4 and 5).	
The arrow indicated an 868 bp of each one. No fragment	
with unligated control plasmid (lanes 2 and 3) were	
detected M: DNA marker.	

(26). Restriction digestion of plasmid DNA on 1% agarose gel.	
Lanes 1 and 2 undigested plasmid DNA, lanes 3, 4 and 5	
restricted plasmid DNA) and lane M: DNA ladder	89
(27). Nucleotide sequence of genomic clone encoding PAP-	
Heba	90
(28). The amino acid sequence (289 aa) of PAP-Heba gene	
from P. americana plant	91
(29). Alignment of nucleotide sequence of PAP-Heba with	
those of the other antiviral proteins available in GenBank	
(PAP-I, PAP-II, PAP-S and MAP)	92
(30). Consensus phylogenetic tree of nucleotide constructed	
from the multiple alignment of 868 bp PAP-Heba gene of	
P. americana plant and other antiviral proteins in	
Genbank	94
(31). Alignment of amino acid sequence of PAP-Heba with	
those of the other antiviral proteins	97

LIST OF ABBREVIATIONS

(A)

AFLP Amplified Fragment Length Polymorphism

(B)

BLAST Basic Local Alignment Search Tool

 β ME β -Mercaptoethanol

bp base pair

BSA Bovine serum albumin

(C)

°C Temperature

cDNA Complementary deoxynucleic acid

cm Centimeter cv. Cultivar

CMV Cucumber mosaic virus

CTAB hexadecyltrimethyl-ammonium bromide.

C Control

(D)

DAS-ELISA Double antibody sandwich- Enzyme linked

immunosorbent assay

DNA Deoxy ribonucleic acid

dNTP_s Dideoxy nucleotide triphosphate

dsH₂O distilled water
DTT Dithiothreitol

(E)

EDTA Ethylene diamine tetraacetic acid.

E. coli Escherichia coli

(F)

Fig. Figure

(G)

G gram(s)