The Role of Diffusion Magnetic Resonance Imaging In Evaluation of Brain Tumors and Their Recurrence

Essay Submitted for Partial Fulfillment of Master Degree In Radiodiagnosis

Presented by Margaret Mansour Aziz

M.B., B. Ch., Ain Shams University

Under Supervision of

Prof. Dr. Ahmed Moustafa Mohammed

Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Dr. Remon Zaher Elia

Lecturer of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Sham, University
2013

Contents

Page
AcknowledgementI
List of abbreviations II
List of tablesIV
List of figuresVII
Introduction1
Aim of the work
I - Anatomical Considerations
II- Pathology of Brain Tumors
III- Technique of Diffusion-Weighted Imaging
IV- Different uses of Diffusion-Weighted imaging in brain tumors and their recurrence
V- Illustrative cases
Summary and conclusion
References
Arabic Summary

Dedication

To My Beloved Mother, because of you I'm here today and just for you I dedicate every success I achieve in my life, Wish you and My Father are proud of me.

Margaret

First and foremost thanks to Almighty *GOD*, the most merciful and kind for helping throughout this work to be completed in this form.

I would like to express my deepest gratitude & appreciation to **Prof. Dr. Ahmed Moustafa Mohammed**, Professor of Radiodiagnosis, faculty of medicine, Ain Shams University, who supervised this study and provided me the finest details & rules to write this fruitful essay. Also he taught me how to listen & respect the small points before the big ones. It's a great honor to work under his guidance& supervision.

My deep gratitude goes to *Dr. Remon Zaher Elia,* lecturer of Radiodiagnosis, faculty of medicine, Ain Shams University for his effort & updated knowledge. He taught me how to gather scientific data from different books and updated papers.

My deep thanks to *Prof. Dr. Khaled Abo ElFetouh,* Professor of Radio-diagnosis, Faculty of Medicine, Ain shams University for his kind assistance and because he allowed me to quote investigations conducted in MRI unit of El Demerdash hospital to apply the knowledge to practice.

Special words for my lovely family (My Mother, My Husband and My Sister) for their tenderness, love, care & encouragement whom without, I could not probably finished this essay.

Margaret Mansour Aziz

List of Abbreviations

AC	Anterior Commissure
ADC	Apparent diffusion coefficient
AIDS	Acquired immunodeficiency syndrome
CNS	Central nervous system
CPC	Choroid plexus carcinoma
CPP	Choroid plexus papilloma
CSF	Cerebrospinal fluid
CST	Corticospinal tract.
CT	Computed Tomography
DNT	Dysembryoplasticneuroepithelial tumor
DTI	Diffusion tensor imaging
DWI	Diffusion weighted imaging
EP SE	Echoplanar spin echo
EPI	Echoplanar imaging
ET	Enhancing tumor
FA	Fractional anisotropy
FLAIR	Fluid-attenuation inversion recovery
Fps	Frame per second
G	Gradient
GBM	Glioblastomamultiforme
Gy	gray
IHC	Immunohistochemistry
IOFF	Inferior Occipitofrontal Fasciculus
LFB	Luxol fast blue
MB	Multibanded excitation
MD	Mean diffusivity
M-EPI	Multiplexed-EPI
Mm	Millimetre
MRI	Magnetic resonance imaging
N/C ratio	Nuclear to cytoplasmic ratio
NADC	Normalized apparent diffusion coefficient
NET	Non-enhancing tumor
PD	Proton density

PPTID	Primitive neuro ectodermal tumors
PRL	Prolactin
PXA	Pleomorphic xanthoastrocytoma
RF	Radiofrequency
ROI	Region of interest
SE	Spin echo
Sec	Second
SEGA	Subependymal giant cell astrocytoma
SI	Signal intensity
SIR	Selective inversion recovery
SNR	Signal to noise ratio
SOFF	Superior Occipitofrontal Fasciculus
T	Tesla
TE	Echo time
TRN	Treatment related necrosis
TS	Tuberous sclerosis
WHO	World health organisation
WI	Weighted image
WM	White matter

List of Figures

Figure No.	Title	Page No.
1.	Cingulum: (A) illustration and (B) gross dissection.	10
2.	Superior and inferior occipitofrontal fasciculi and	11
	uncinate fasciculus: (A) illustration and (B) gross	
	dissection.	
3.	Illustration showing uncinate fasciculus and	13
	superior longitudinal fasciculus.	
4.	Diagram showing principal systems of association	14
	fibers in the cerebrum.	1.7
5.	Illustration showing corticospinal tract.	15
6.	Corona radiata: (A) illustration and (B) gross	16
	dissection.	17
7.	Illustration showing internal capsule.	17
8.	Geniculocalcarine tract (optic radiation): (A)	18
0	illustration and (B) gross dissection.	10
9.	Corpus callosum: (A) illustration and (B) gross dissection.	19
10.		20
10.	Illustration shows the anatomic relationships of several WM fiber tracts in the coronal plane.	20
11.	Axial illustration of the midbrain.	22
		22
12.	Axial illustration of the midpons.	27
13.	Gross specimen of high grade infiltrating	21
14.	astrocytoma. Grass specimen of a glioblestoma	28
15.	Gross specimen of a glioblastoma. A whole-mount histologic section of a brain shows	28
13.	multiple foci of glioblastoma tumor cell clusters.	20
16.	Photomicrograph of glioblastoma multiforme.	29
17.	Photomicrograph of oligodendroglioma.	31
18.	An image of solid ependymoma tumor in fourth	32
10.	ventricle.	34
19.	Microscopic pathology of classic medulloblastoma.	34
20.	Photomicrograph of medulloblastoma.	35
21.	Microscopic pathology of PRL-secreting adenoma.	36
۷1.	wherescopic paniology of FKL-secteding adenoma.	20

Figure No.	Title	Page No.
22.	Gross specimen of cerebral lymphoma.	38
23.	Photograph of a resected meningioma.	39
24.	Photograph of gross specimen showing secondary	41
	(metastatic) melanoma nodules.	
25.	Photograph of a gross specimen of lipoma.	44
26.	Diagram shows the diffusion-driven random	45
	trajectory of a single water molecule during	
	diffusion.	
27.	Examples of typical artifacts of DWI.	50
28.	Three examples of DW images with shears,	51
	stretches, and translations induced by eddy currents.	
29.	Description of the M-EPI pulse sequence compared	53
20	with conventional EPI.	7 4
30.	Neuronal Fiber tracks generated using the M-EPI	54
	sequence.	
31.	A DW image shown in three orthogonal views.	55
32.	Diagram showing visualization of the proton	56
	displacement front due to diffusion.	
33.	DWI of brain showing anisotropic nature of	57
	diffusion in the brain.	
34.	Calculation of signal intensity on an isotropic	58
	diffusion-weighted image.	
35.	Calculation for the removal of T2-weighted contrast	59
36.	Creation of an ADC map.	62
37.	Conceptual example of deterministic streamline	66
20	tractography based on the diffusion tensor model.	
38.	Corticospinal Tract: A. Illustration. B. Coronal	67
20	directional map. C. Tractogram.	60
39.	Cingulum: A. Directional map. B. Tractogram	68
40.	Superior longitudinal fasciculus: A. Directional	69
4 1	map. B. Tractogram.	70
41.	Diagrams a-b showing: Diffusion of water molecules.	70
	molecules.	

Figure No.	Title	Page No.
42.	Diagram showing a simplified 3D tissue model.	71
43.	MRI of glioblastoma multiforme.	76
44.	MRI of anaplastic astrocytoma.	77
45.	MRI of diffuse astrocytoma.	78
46.	MRI of glioblastoma multiforme.	80
47.	MRI of cerebral abscess.	82
48.	MRI of glioblastoma multiforme.	83
49.	MRI of left occipital metastasis.	84
50.	MRI of a case with radiation necrosis.	87
51.	MRI of a case with biopsy-proven tumor after	89
	receiving radiation and chemotherapy for anaplastic astrocytoma.	
52.	Schematic diagram shows variation in tumor ADC	90
	with treatment.	
53.	Correspondence between increased ADC in	91
	pineal-region germ cell tumor and decreased tumor	
	size after treatment.	
54.	MRI of atypical meningioma.	95
55.	MRI of primary CNS lymphoma .	96
56.	MRI of glioblastoma multiforme.	97
57.	MRI of multiple brain metastases.	98
58.	MRI of cerebral metastasis.	99
59.	MRI of epidermoid tumor .	101
60.	MRI of arachnoid cyst plus meningioma.	102
61.	MRI of desomoplastic medulloblastoma.	103
62.	MRI of primitive neuroectodermal tumor.	104
63.	MRI with DTI of ganglioglioma.	109
64.	MRI with DTI of infiltrating astrocytoma.	110
65.	MRI with DTI showing vasogenic edema.	111
66.	MRI with DTI of high-grade astrocytoma.	112

List of Tables

Table No.	Title	Page No.
1	The World Health Organization (WHO)	25
	Classification of tumors affecting the Central	
	Nervous system .	

INTRODUCTION

Primary brain tumors account for 50% of intracranial tumors and secondary brain cancer accounts for the remaining cases. There are two types of brain tumors: primary brain tumors that originate in the brain and metastatic (secondary) brain tumors that originate from cancer cells that have migrated from other parts of the body. A primary brain tumor rarely spreads beyond the central nervous system, and death results from uncontrolled tumor growth within the limited space of the skull. Metastatic brain cancer indicates advanced disease and has a poor prognosis (*Stanley*, 2007).

Primary brain tumors can be cancerous or non-cancerous. Both types take up space in the brain and may cause serious symptoms and complications. All cancerous brain tumors are life threatening (malignant) because they have an aggressive and invasive nature. A non cancerous primary brain tumor is life threatening when it compromises vital structures. Brain cancer is the leading cause of cancer-related death in patients younger than age 35 (*Stanley*, 2007).

The diagnosis of brain tumors by magnetic resonance imaging (MRI) is usually based on basic un-enhanced T1- and T2-weighted images and post contrast T1-weighted images. Conventional MRI techniques are not sufficient for the grading and specification of brain tumors. Furthermore, several non-

neoplastic lesions, such as arachnoid cysts, heterotopic gray matter, tubers of tuberous sclerosis, cavernous hemangiomas, aneurysms, granulomas, abscesses, radiation necrosis and acute demyelination with a mass effect can mimic brain tumors on MRI (*Stephan*, 2007).

In diffusion-weighted imaging (DWI), the image contrast is determined by the random translational (Brownian) motion of water molecules and DWI is most often used for the evaluation of stroke. The quantification of diffusion using DWI, i.e. diffusion imaging, has been attracting growing interest as an easy method to further characterize the nature of brain tumors (*Stephan*, 2007).

So Diffusion Imaging appears to have the potential to add important information to pre-surgical planning. While experience is limited, DWI appears to provide useful local information about the structures near the tumor, and this appears to be useful in planning. In future, DWI may provide an improved way to monitor intra-operative surgical procedures as well as their complication. Furthermore, the evaluation of the response of treatment to chemotherapy and to radiation therapy might also be possible. While diffusion imaging has some limitations, its active investigation and further study are clearly warranted (*Inoue et al.*, 2005).

Diffusion-weighted (DW) MR imaging is a means to characterize and differentiate morphologic feature, including edema, necrosis, and tumor tissue, by measuring differences in apparent diffusion coefficient (ADC). It is hypothesized that DW imaging has the potential to differentiate recurrent or progressive tumor growth from treatment induced damage to brain parenchyma in high-grade gliomas after radiation therapy (*Patric et al.*, 2006).

ADC could provide addition useful information in the diagnosis of patient with brain tumor, such as tumor malignancy, peritumoral infiltration and the type of meningioma (*Kono et al., 2005*).

Diffusion fiber tractography is the only method giving an indirect, in-vivo view of the nerve fiber trajectory. It can assist in the preoperative check-up for brain tumors (corticospinal bundle) or for medullary compression (*Escolar*, 2006).

AIM OF THE WORK

The aim of study is to evaluate the role of Diffusion Magnetic Resonance Imaging in the assessment of brain tumors and their recurrence.