PHAKIC INTRAOCULAR LENS

Essay Submitted by

Mostafa AbdelAty Ramdan

(M.B, B.Ch Ain Shams University)

In partial fulfillment of master degree in "Ophthalmology"
Under supervision of

Prof. Dr. Mervat Salah Mourad

Professor of ophthalmology Ain Shams University

Ass.Prof.Dr.Mahmoud Ahmad AbdelHamid

Assistant Professor of ophthalmology Ain Shams University

> Ophthalmology Department Faculty of Medicine Ain Shams University Cairo - Egypt 2012

List of Contents

Contents	
Acknowledgment	III
List of abbreviations	IV
List of figures	VII
List of tables	XI
Introduction	1
Aim of the work	4
Anatomy of the anterior segment	5
Refractive errors	16
Types of Phakic Intraocular Lenses	23
Anterior-chamber PIOLs	23
Posterior-chamber PIOLs	40
Patient selection& preoperative examination	49
Calculation of PIOL power	69
Procedure of Implantation of PIOL	77
Complication of PIOLs	106
Summary	140
References	143
Arabic summary	

Acknowledgment

First, I am thankful to ALLAH the most merciful for blessing this work and for making it come to light.

I would like to express my deepest gratitude, thanks and appreciation to **Prof.Dr. Mervat Salah Mourad**, Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for her enthusiastic support, continuous encouragement, valuable generous advice, and great help throughout this work

I am very grateful to Ass.Prof.Dr.Mahmoud Ahmad AbdelHamid, Assistant Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for his kind supervision, support, indispensable suggestion, and guidance in preparing this essay.

Also, Special thanks to my family, friends and Colleagues for their sincere support and care.

List of Abbreviations

ACD Anterior Chamber Depth AC PIOL Anterior Chamber Phakic Intraocular Lens ACW Anterior Chamber Width AMO Advanced Medical Optics AS-OCT anterior segment optical coherence tomography	
ACW Anterior Chamber Width AMO Advanced Medical Optics	
AMO Advanced Medical Optics	
Table March 12002001 Spirits	
AS-OCT anterior segment optical coherence tomography	
ATPIOLs Artisan toric phakic intraocular lenses	
BAB Blood-Aqueous Barrier	
BCVA Best Corrected Visual Acuity	
BSS Balanced Salt Solution	
D Diopter	
DSAEK Descemet's Stripping Automated Endothelial Keratoplas	sty
ECC Endothelial Cell Count	
ECL Equivalent contact lens power	
ELP Effective Lens Position	
EPI-LASIK Epithelial Laser In-Situ Keratomileusis	
FDA Food and Drug Association	
Fig. Figure	
HEMA Hydroxyethylmethacrylate	
I/A Irrigation/Aspiration	
ICGA Indocyanine green angiography	
ICL Implantable Contact Lens or Implantable Collamer Lens	· .
ICRS Intrastromal Corneal Ring Segments	

IOP Intraocular Pressure ISO International Organization for Standardiz LASEK laser assisted sub-epithelium Keratomile	
LASEK laser assisted sub-epithelium Keratomile	eusis
_	
LASIK laser in situ Keratomileusis	
LOCS Lens opacity classification system	
mm Millimeter	
MTF Modulation Transfer Function	
Nd:YAG Neodymium -doped Yttrium Aluminum	Garnet
nm Nanometer	
OCT Optical coherence tomography	
OVD Ophthalmic Viscosurgical Device	
PC Posterior Chamber	
PC PIOL Posterior Chamber Phakic Intraocular Le	ens
PI Peripheral Iridectomy	
PIOL Phakic Intraocular Lens	
PMMA Polymethyl Methacrylate	
PRK Photorefractive keratectomy	
PRL Phakic Refractive Lens	
RD Retinal Detachment	
RK Radial keratotomy	
RLE Refractive Lens Exchange	
RRD Rhegmatogenous retinal detachment	
SE Spherical Equivalent	
TICL Toric Implantable Contact Lens	

UBM	Ultrasound Biomicroscopy
UCVA	Uncorrected Visual Acuity
US	Ultra sound
UV	Ultra violet
VA	Visual Acuity
WTW	White to White diameter
μm	Micrometer

List of Figures

Fig. No	Description	page
1	The corneal layers.	7
2	Anterior and posterior chambers of the eye.	10
3	Lens suspended behind the iris by suspensory ligaments.	13
4	The lens.	14
5	The Gross anatomy of the adult human lens.	15
6	Myopia with accommodation relaxed.	16-17
7	Hyperopia with accommodation relaxed.	20
8	Types of astigmatism.	22
9	Evolution from the Baikoff ZB5M phakic lens to The NuVita MA20 lens.	24
10	Angle-supported Baikoff ZB5M (left) and the NuVita MA20 (right).	26
11	Rigid PMMA Angle-supported ZSAL-4 lens.	28
12	ZSAL-4/Plus phakic lens 6 months after surgery.	28
13	Rigid PMMA angle-supported Phakic 6 lens	29
14	Phakic 6H angle-supported lens.	30
15	The GBR/Vivarte foldable angle-fixated phakic IOL in situ.	31
16	Foldable hydrophilic acrylic angle-supported Vivarte lens.	31
17	Foldable hydrophilic acrylic angle-supported I-CARE lens.	32
18	Alcon Acrysof anterior chamber lens before and after implantation.	33
19	Kelman Duet angle-supported lens.	34
20	ThinOptx angle-supported Anterior chamber phakic IOL.	35
21	Ultrachoice 1.0 thin lens is not a Fresnel lens.	35
22	The Vision Membrane.	36
23	Artisan Lens.	38

24	A rigid Artisan PIOL (Ophtec).	38
25	Foldable iris-fixated Artiflex lens.	39
26	Artiflex flexible phakic IOL.	40
27	Posterior chamber sulcus supported implantable	43
	contact lens.	
28	The Visian ICL is implanted behind the iris and	43
	immediately in front of the natural lens of the eye.	
29	ICL.	44
30	The biomicroscopic postoperative image	45
	demonstrating the visibility of the Visian ICL	
	V4c's KS-Aquaport.	
31	Posterior chamber phakic refractive lens for	47
	myopia.	
32	PRL IOL Tech.	47
33	Pupil diameter measurement using infrared	52
	technologies.	
34	Trefoil induction after Artisan PIOL implantation.	53
35	Endothelial cell photography.	55
36	Anterior segment optical coherence tomography.	57
37	Anterior chamber sizing using OCT.	61
38	UBM method in determining the sulcus-to-sulcus	65
	horizontal diameter.	
39	The Phakic 6 H2 Calculation Worksheet.	72
40	ICL power calculation software.	75
41	Kelman–McPherson forceps.	80
42	Surgical steps during ZSAL- lens implantation.	81
43	Lester IOL manipulators for lenses with or	81
	without holes.	
44	Implantation technique for Kelman Duet implants	83
	system.	
45	Introduction of the GBR lens in a human eye.	85
46	Implantation steps of Acrysof (cachet).	88
47	Implantation of Artisan implants.	91
48	Long-angled Forceps.	91
49	Enclavation needle.	91

50	Toric Verisyse PIOL implantation.	92
51	Implantation of Artiflex by special forceps.	93
52	Artiflex Implantation instruments.	94
53	Inserting the ICL into the cartridge.	95
54	Implantation steps of ICL.	96
55	The Vukich ICL Manipulator.	97
56	Implantation steps of PRL.	99
57	Endophthalmitis after AC-PIOL implantation.	109
58	Deposits on AC-PIOL.	113
59	Acute sterile postoperative inflammation.	114
60	Pupil ovalization 2 years after implantation of an	115
	angle-supported phakic IOL.	
61	Retroillumination images of an angle-fixated	116
	anterior chamber phakic intraocular lens showing	
	rotation around the optical axis.	
62	Undersized myopic NuVita PIOL causing	117
	decentration and rotation and predisposing to	
	halos, glare, and endothelial cell loss.	
63	Oversized PIOL causing iris tucking seen on	119
	gonioscopy.	
64	Nuclear cataract in an eye with an AC-PIOL.	120
65	Examination of the patient's cornea.	123
66	Iris pigment defects at the site of Enclavation.	124
67	The angle shows severe pigmentation of the angle	124
	of the anterior chamber.	
68	Inflammatory reaction after iris-claw lens	125
	implantation.	
69	After iris-claw AC-PIOL implantation (Artisan).	126
70	Artisan lens dislocation after blunt trauma.	126
71	Induction of corneal astigmatism due to a 6-mm	127
	superior limbal incision.	
72	The poor vaulting of ICL resulted in anterior sub	130
	capsular opacities of the crystalline lens.	
73	Cataract formation after PC-PIOL implantation.	130
74	Four forms of vaulting as visualized with the	131

	Scheimpflug camera.	
75	Viscoelastic related IOP rise with deep chamber and	133
	normal expected vaulting.	
76	Pigmentary deposits are seen in the angle in an eye	134
	with a posterior chamber phakic intraocular lens.	
77	Inferior decentration of the ICL.	136
78	Central keratopathy after implantation of a PC-P IOL.	137

List of Tables

Table No.		page
1	The structural characteristics of the PRL	48
2	Recommendation regarding Acrysof cachet iol implantation.	56
3	Safety guidelines and incision size of different types of PIOLs according to manufacturers' instructions	58
4	AS-OCT anterior chamber biometry results	60
5	Van der Heijde's Nomogram	71
6	PRL Power Calculations	76

Introduction

Refractive error correction has become a long standing debate, from the traditional use of spectacles and contact lenses to the era of keratotomy and LASIK. Another alternative for the refractive errors' management is the phakic intraocular lens (PIOL). Phakic intraocular implants overcome the disadvantages of corneal refractive surgeries and have been shown to correct ametropia successfully. (Baton Rouge et al, 2006)

Many patients with high myopia cannot see well with glasses, and their thickness may cause psychological problems. Others cannot tolerate contact lenses. So these patients need other solutions for their myopia. (Fechner and worst, 1989)

Refractive surgery using excimer laser has proven to be very useful in the correction of a wide spectrum errors of refraction. However, common options like laser assisted in situ keratomileusis (LASIK), photorefractive keratectomy (PRK), Laser-Assisted Subepithelial Keratectomy (LASEK) and Epi-LASIK have shown their limitations for the correction of higher myopia. (Mertens E, 2006)

In these cases undesired effects of the photoablative procedure, such as loss of contrast and night vision symptoms may occur. Furthermore, excessive ablation of corneal tissue may cause iatrogenic keratectasia. (Galvis V et al, 2008)

Intrastromal Corneal Ring Segments (ICRS) is another technology for correction of myopia but limited to low degrees. (Assil et al, 1995)

Clear lens extraction with IOL implantation is one of the surgical solutions, but leads to loss of accommodation, especially disadvantageous in young patients. In addition, the risk of retinal detachment is nearly doubled for patients with myopia of more than -10.0 diopters (D) without surgery. (Arne JL, 2004)

The outcome of phakic IOL implantation has been rather favorable, with significant improvement in uncorrected visual acuity, and tolerable visual symptoms in terms of glare and halo. (Batra and Mc leod, 2001)

Angle supported IOL for treatment of myopia demonstrated good efficiency during two years of follow up. Long term complications such as iris retraction and endothelial cell loss remain a concern. (Alleman N et al, 2000)

Angle supported anterior chamber implant will be successfully tolerated if it is correctly adapted to the diameter of the anterior chamber. (Baikoff G et al, 2004)

The iris-fixated (Fechner-Worst) anterior implant was developed as a modification of Lobster-Claw lens used for aphakia. The lens is concave, so there is sufficient space between the implant and the corneal endothelium. As it is an iris claw lens, so the angle is free for normal aqueous drainage. One of its important advantages is the reversible

techniques. If indicated, lens removal would not be difficult and not more traumatic than implantation. Generally the phakic implant respects totally corneal architecture. (Baikoff G, 1997)

Posterior chamber phakic IOLs fit in the space between the iris and the crystalline lens. The two available posterior phakic IOLs are the Implantable Contact Lens and the Phakic Refractive Lens .The design of the Staar lens (ICL-V4) with greater vaulting than the V2 and V3 models, and the increased surgical experience with this lens, has been associated with a decrease in the frequency of lens opacification. (Chang JS and Meau AY, 2007)

AIM OF THE WORK

The aim of this work is evaluating different types, indications, methods of implantation, methods of calculation of power of phakic intraocular lenses and complications with possible management.