

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Cairo University

Institute of statistical studies and research Department of computer and information sciences

Framework for Knowledge Management on the Semantic

Web for E-Learning

Master thesis

Submitted by

Nagwa Omar Hussein

Supervised by

Prof. Dr: Ghazal Abd El Aziz Amer

Prof. Dr. Magdy Aboul-Ela

Dr. Fatma Abdou El-Licy

Approval Sheet

Framework for Knowledge Management on Semantic Web for E-Learning

M.S.C Thesis

<u>by</u>

Nagwa Omar Hussein

This thesis is for M.S.C Degree in computer and information science, Department of computer and information sciences, institute of statistical studies and research, Cairo University, has been approved by:

Name

Prof.Dr: Ghazal Abd El Aziz Amer

Prof.Dr: Magdy Aboul-Ela

Prof.Dr: Akram Salah

Prof.Dr: Hesham Hassan

Signature

Acknowledgement

I would like to express my sincere gratitude to my supervisor professor Dr. Ghazal Abd El Aziz for his supervision, continuous follow-up and guidance throughout this work.

I would like to express my deepest appreciation to my supervisor Prof. Dr. Magdy Aboul-Ela for his faithful assistance and potential help in terminating this work. I am also appreciating my deep thanks to Dr. Fatma A. El-Licy for providing guidance and moral supports.

Also my deepest thanks belong to Dr. Samer Bahaa for his continuous encouragement and potential support.

Finally, I wish to thank the Ontoprise Company for its support with the Ontobroker Tool that helped me through the implementation part of this thesis.

Abstract

Time or the lack of it is the reason given by most business for failing to invest in learning. Therefore, learning process must be accelerated. The acceleration of the learning process, however, should not impair the quality of the learned materials. Such improvement includes using the e-learning instead of the traditional learning, in which the learning process will be improved through the selection of suitable materials/contents and efficient tools/mechanisms to organize and manage such contents/materials.

The objective of this thesis is to adopt the semantic web for managing elearning knowledge (material). Integrating semantic web with Knowledge Management will introduce e-learning material that is amenable for better browsing and faster searching. The e-learning knowledge is represented through Ontology Web Language (OWL) and the ontobroker (the inference engine that read the ontology).

Table of Contents

Chapter 1 :INTRODUCTION

1.1: Knowledge Managemeent	3
1.2: Semantic Web	3
1.3: E-Learning	4
1.4: E-learning Knowledge management framework	4
1.5: Thesis Layout	5
Chapter 2: BACKGROUND	
2.1: Knowledge Management	7
2.1.1: Hierarchy of Business Intelligence	7
2.1.2: Knowledge in Knowledge Management	10
2.1.3: Knowledge Assets	10
2.1.4: The Importance of Knowledge Management	11
2.1.5: The Benefits of Knowledge Management	12

	2.1.6: Knowledge Management History	12
2.2	: Semantic Web	14
	2.2.1: Underlying technologies of semantic web	15
	2.2.1.1: Uniform Resource Identifier (URI)	16
	2.2.1.2: XML Layer	17
	2.2.1.3: Standardizing Resource Description: RDF	17
	2.2.1.4: Web Ontology Language layer	19
	2.2.1.5: Query and Rule Layers	23
	2.2.1.6: Logic layer	23
	2.2.1.7: Proof, Trust, Crypto, and Application Layer	23
2.3:	E-Learning	23
	2.3.1: History and Trends of Computer-Supported Learning	24
	2.3.2: Goals of E-Learning	25
	2.3.3: Advantages and Disadvantages of E-learning	26
	2.3.4: Pedagogical designs for optimizing e-learning	27

2.3.5: The boundaries of knowledge versus content	30
2.3.6: Integration between Knowledge management and E-learning	30
2.3.7: Integration between E-learning and Semantic Web	31
Chapter 3: Related Work	
3.1.1: AquaRing Approach	33
3.1.2: E-Learning model based on semantic web technology	36
3.1.3: The OntoAWare System	38
Chapter 4: Methodology and Framework	
4.1: The Methodology for the proposed system	46
4.1.1: Literature Review	46
4.1.2: System Modeling	46
4.2: Knowledge Management Framework	47
4.2.1: Knowledge Capturing	48
4.2.2: Knowledge Representation	52

4.2.3: Knowledge Processing	54
4.2.3.1: FLO Files	55
4.2.3.2: The Ontobroker	55
4.2.3.3: User Interface	56
4.2.4: Knowledge Sharing	56
4.2.5: Using Of Knowledge	56
4.3: System Evaluation	56
Chapter 5: Implementation Part	
5.1: The OFD System	58
5.1.1: The Trainer Selection Subject	58
5.1.2: Query Generation and execution	58
5.1.3: Query Feedback	58
5.2: The Implementation for the OFD system	59
5.3: System Modeling	66
5.4: System Implementation Design	70

5.5: System Evaluation	72
Chapter 6: Conclusion and Future Work	
6.1: Conclusion	74
6.2: Future Work	75
References	76

List of Figures

Figure 1.1: The Process Flow for the Proposed System	5
Figure 2.1: Hierarchy of Business Intelligence	9
Figure 2.2: Semantic Web Layers	16
Figure 3.1: The Structure of the AquaRing Educational Ontology	36
Figure 3.2: OntoWare Active Slide/Concept Navigation Screen	41
Figure 3.3: Basic OntoWare Functional Architecture	42
Figure 4.1: Knowledge Management Framework	48
Figure 4.2: Knowledge Phases	49
Figure 4.3: Capturing Phase	52
Figure 4.4: Knowledge Phases	52
Figure 4.5: The Representation Phase	53
Figure 4.6:Knowledge Phases	54
Figure 4.7: Knowledge Processing	55
Figure 5.1: The first part of the first word web page	60