

Clinico-electrophysiologic correlation with Cognitive Function in children with Attention Deficit Hyperactivity Disorder

THESIS

Submitted for fulfillment of the Ph.D. Degree in Medical Childhood Studies (Child health and Nutrition)

PREPARED BY

Noha Fawzy Seaf

M.B., B.Ch., M.Sc. Pediatrics Cairo University

UNDER SUPERVISION OF

Prof. Dr. Hamed Ahmed El-khayat

Professor of Pediatrics Faculty of Medicine Ain-Shams University

Prof. Dr. Samia Sami Aziz

Professor of Public Health Medical Studies Department Institute of Postgraduate Childhood Studies Ain-Shams University

Dr. Nabil Kitchener

Consultant Pediatrics Neuropsychiatrist GOTHI Regional Director of World Stroke Organization

Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is the most common emotional, cognitive and behavioral disorder in children. ADHD has been hypothesized to be results from structural defects in brain networks influencing cognitive and motor behavior or dysfunction of the central nervous system. EEG is a useful source of information on the background state of the brain, indexing the substrate of cognition and behavior, so it appears to be an appropriate tool for assessing this disorder. This study evaluates cognitive function in children with different types of ADHD; detect the EEG changes in different aspects of ADHD and study the correlation between cognitive function and EEG changes among different subtypes of attention deficit hyperactivity disorder children. The study group (7. children) was divided into three subgroups according to the "subtypes of ADHD. All children were between the ages of o and by years. Neuropsychiatric assessment, electroencephalographic (EEG) study and intelligence quotient (IQ) testing were done to all ADHD subtypes. The study showed that the majority in all subtypes of ADHD had average IQ with no significant difference between different types of ADHD regarding their visual and auditory short term memories. Also revealed that ξV , of all ADHD groups has electroencephalographic changes. There were significant differences among ADHD subtypes regarding intensity of LT frontal alpha wave, which was significantly increased in combined ADHD group more than in inattention and hyperactive-impulsive ADHD groups, but there were no significant differences between ADHD groups regarding intensity of other EEG waves. The study showed that RT frontal beta wave changes is significantly increased in low average and high average IQ than in average IQ in ADHD children and that LT occipital alpha wave changes is significantly increased in high average IQ than in low average, average IQ and superior IQ in ADHD children. There was no significant correlation between EEG changes and visual short term memory deficit in ADHD children. On the other hand the study demonstrated a significant increase in LT frontal delta and LT temporal beta &delta waves changes in ADHD children with auditory short term memory deficit. The study concluded that there were correlation between some EEG changes and some cognitive function indicators.

Keywords:

Attention Deficit Hyperactivity Disorder (ADHD) – Children – Subtypes – Electroencephalography (EEG) – Intelligence quotient (IQ) – Visual short term memory– Auditory short term memory.

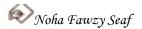
TO THE SPIRIT OF MY FATHER

Acknowledgement

First and foremost thanks to ALLAH the source of all knowledge, without his help, this work would not have been fulfilled.

I am very grateful to **Prof** .**Dr.** Hamed Ahmed Elkhayat Professor of Pediatrics, Faculty of Medicine, Ain Shams University for his generous help, valuable advice and kind assessment throughout this work.

I would like to express my sincere thanks and extreme gratitude to **Prof. Dr. Samia Sami Aziz** Professor of Public Health - Department of Medical Studies, Institute of Post-Graduate Childhood Studies, Ain Shams University for her great effort and continuous guidance during this work. It has been a great honor to proceed this work under her supervision.


No words can express my grateful feeling and deepest appreciation toward **Dr.** Nabil Kitchener Estawro Consultant Pediatric Neuropsychiatrist, for his close supervision, valuable advice and meticulous care during this work.

I would like to deeply thank the children and their parents for their great cooperation and I deeply hope better health for them.

My particular appreciation to my **Mother** for her endless love, kind care and continuous encouragement.

I'm indebted to my family for their kindness, unfailing love, support, understanding and encouragement.

Lastly, my deepest thanks to all members of Pediatrics Psychiatric Clinic of Police Authority Hospital for their great help.

Contents

List of Abbreviations	(I)
List of Tables	(IV)
List of Figures	
Introduction	
Aims of the work	
Review of Literature	
* <u>Chapter ():</u> Attention Deficit Hyperactivity Disorder	(٤)
*Chapter (): Cognitive function in ADHD	(٤٥)
*Chapter (): EEG changes in ADHD	()
Subjects and Methods	(٩٣)
Results	
Discussion	
Summary and Conclusion	(١٣٩)
Recommendations	
References	(1 £ £)
Appendices	
Arabic Summary	

List of Abbreviations

AACAP The American Academy of Child and Adolescent Psychiatry

AAP American Academy of Pediatrics **APA** American Psychiatric Academy

ACH Acetylcholine

ADD Attention Deficit Disorder

ADHD Attention Deficit Hyperactivity Disorder

ADHD-Com Attention Deficit Hyperactivity Disorder- Combined subtype **ADHD-HI** Attention Deficit Hyperactivity Disorder- Hyperactive

Impulsive subtype

ADHD-In Attention Deficit Hyperactivity Disorder- Inattentive subtype

ANT Attention Network Test

APA American Psychiatric Association
APRS Academic Performance Rating Scale
b.i.d Twice daily(from Latin bis in die)

Cap Capsule

CBCL Child Behavior Checklist

CD Conduct Disorder

CDC Centers for Disease Control and Prevention

CNN Cable News NetworkCNS Central Nervous System

COMT Catechol-*O*-methyltransferase

CPRS-R Conners Parent Rating Scale-Revised

CPT Continuous Performance Test.

CSF Cerebrospinal FluidCT Computed Tomography

CTRS-R Conners Teacher Rating Scale-Revised

D^γ Dopamine receptor D^γ

DA Dopamine

DAT¹Dopamine transporterDBHDopamine β-hydroxylaseDEXDextroamphetamineDRD¹Dopamine receptor D¹

DSM-II Diagnostic and Statistical Manual of Mental Disorders

Ynd Edition.

DSM-III Diagnostic and Statistical Manual of Mental Disorders

rd Edition.

DSM-III-R Diagnostic and Statistical Manual of Mental Disorders

rd Edition, Revised.

DSM-IV Diagnostic and Statistical Manual of Mental Disorders

th edition.

DSM-IV-TR. Diagnostic and Statistical Manual of Mental Disorders,

£th Edition, Text Revision.

EEG Electroencephalography
EF Executive Function

FDA Food and Drug Administration

fMRI functional Magnetic Resonance Imaging

FSA Food Standards Agency
GABA Gamma aminobutyric acid

GLU Glutamate

GPe external portions of the Globus Pallidus **GPi** internal portions of the Globus Pallidus

GRIN'B Glutamate receptor, ionotropic, N-methyl D-aspartate 'B

HSQ-R Home Situations Questionnaire-Revised

•HT Serotonine
Hz Hertz

Health

IOWA Inattention/Overactivity With Aggression

IQ Intelligence Quotient

Kg Kilogram

LD learning Disability

LT Left

Mg Milligram

M+MPT Methylphenidate + Multimodal Psychosocial Treatment

MPH Methylphenidate

MPT Multimodal Psychosocial Treatment

MRI Magnetic Resonance ImagingMRS Magnetic Resonance Spectroscopy

MTA Multimodal Treatment Study of Children With ADHD

MvMillivoltnNumber

NIMH National Institute of Mental Health

NPP Negative Predictive Power

NS Non significant

OCD Obsessive Compulsive DisorderODD Oppositional Defiant Disorder

PANDAS Pediatric autoimmune neuropsychiatric disorder associated

with streptococcus

PET Positron Emission Tomography

PFC Prefrontal cortex

PPP Positive Predictive Power

q.a.m. Every day before noon (from Latin quaque die ante meridiem)

q.d Four times each day (from Latin quater die sumendus)

RT Right

S Significant

S.D. Standard Deviation

S-ADHD Secondary development of ADHD

SCT Sluggish Cognitive Tempo

SKAMP SKAMP Internet site

SNAP-IV Swanson, Nolan, and Pelham SNpc Substantia Nigra pars compacta SNpr Substantia Nigra pars reticulata

SPECT Single Photon Emission Computerized Tomography

SPSS Statistical Package for Social Science SSQ-R School Situations Questionnaire-Revised

TCV Total Cerebral Volume

TEACh Test of Everyday Attention for Children

TRF Teacher Report Form

TX Texas state (United States postal abbreviation)

U.S. United State
UK United Kingdom

Val Val allele

VNTR Variable Number Tandem RepeatWCST Wisconsin Card Sorting TestWHO World Health Organization

Y Year

List of Tables

Table	Subject	Page
Table (1)	A summary of impairments likely to be associated	11
. , ,	with ADHD.	
Table (†)	Common Behavior Rating Scales used in the	٣ ٢
. ,	Assessment of ADHD and Monitoring of Treatment.	
Table (*)	Medications approved by the FDA for the treatment of	٣٨_
. ,	ADHD.	٣٩
Table (‡)	Summary of EEG frequency bands and ADHD.	٧٨
Table (°)	Age distribution among ADHD subtypes.	99
Table (7)	Gender distribution among ADHD subtypes.	1
Table (V)	Descriptive statistics of demographic data of different	1 • 1
	subtypes of ADHD.	-
		1.7
Table (^)	Comparison between different ADHD subtypes	1.4
	according to age of onset of symptoms.	
Table (9)	Comparison between different ADHD subtypes	1 . £
	according to mode of delivery.	
Table (1 ·)	Comparison between different ADHD subtypes	1 . £
	according to neonatal history.	
Table (11)	Comparison between different ADHD subtypes	1.0
, ,	according to speech development.	
Table (1 T)	Comparison between different ADHD subtypes	1.7
, ,	according to behavior disturbances.	
Table (1 ")	Comparison between different ADHD subtypes	١٠٦
, .	according to learning abilities.	
Table (1 [£])	Comparison between different ADHD subtypes	١.٧
, ,	according to child parents relationship.	
Table (10)	Comparison between different ADHD subtypes	١.٧
	according to parental relationship.	
<i>Table</i> (17)	Comparison between different ADHD subtypes	١ • ٨
, ,	according to psychiatric family history.	
Table (1 V)	Comparison between different ADHD subtypes	١ • ٨
, ,	according to speech and language.	

Table	Subject	Page
Table (11)	Comparison between different ADHD groups	1 . 9
	according to social cognition & general information.	
Table (19)	Descriptive statistics of IQ in ADHD children.	1.9
Table ()	Comparison between different ADHD subtypes	1 . 9
	according to intelligent quotient (IQ).	
Table († 1)	Comparison between different ADHD subtypes	11.
	according to visual short term memory.	
Table (TT)	Comparison between different ADHD subtypes	11.
	according to auditory short term memory.	
Table (TT)	Comparison between different ADHD subtypes	11.
	according to EEG - background activity.	
Table († £)	Descriptive statistics of EEG changes in ADHD	111
	children.	
Table (۲0)	Comparison between males and females regarding	117
	intensity of different frontal waves.	
Table (^{† †})	Comparison between males and females regarding	114
	intensity of different parietal waves.	
Table (YV)	Comparison between males and females regarding	111
	intensity of different temporal waves.	
Table (۲1)	Comparison between males and females regarding	110
, ,	intensity of different occipital waves.	
Table (۲۹)	Comparison between different ADHD types regarding	117
, ,	different frontal waves.	
Table (**•)	Comparison between different ADHD types regarding	117
	different parietal waves.	
Table ("1)	Comparison between different ADHD types regarding	111
,	different temporal waves.	
Table ("")	Comparison between different ADHD types regarding	119
, ,	different occipital waves.	
Table ("")	Correlation study between different EEG changes and	14.
	core symptoms of ADHD, IQ, visual and auditory	
	short term memory.	
Table (** *)	Correlation study between LT frontal alpha wave	1 7 1
	changes and core symptoms of ADHD.	

Table	Subject	Page
Table ("°)	Correlation study between RT frontal beta wave and	177
	LT occipital alpha wave changes and IQ in ADHD	
	children.	
Table (77)	Correlation study between LT frontal delta wave, LT	١٢٣
	frontal theta wave, RT parietal beta wave, LT parietal	
	beta wave and LT temporal beta wave changes and	
	visual short term memory in ADHD children.	
Table (TV)	Correlation study between LT frontal delta wave, LT	172
	temporal beta wave, LT temporal delta wave changes	
	and Auditory short term memory in ADHD children.	

List of Figures

Figure	Subject	Page
Figure (1)	The major areas of human brain.	* *
Figure (†)	Conceptual model of International Classification of Functioning, Disability, and Health.	٧١
Figure (")	Functional problems associated with attention deficit hyperactivity disorder using the International Classification of Functioning, Disability, and Health conceptual model.	٧٣
Figure (‡)	Some typical recordings of brainwave stated by the EEG.	٧٦
Figure (°)	Neurophysiological model of the regulation of the alpha and theta frequency bands.	۸۰
Figure (7)	Neurofax Electroencephalographic YTI.B.	97
Figure (V)	Different ADHD subtypes.	99
Figure (^)	Gender distribution among ADHD subtypes.	1
Figure (4)	Age of onset of ADHD symptoms among different ADHD subtypes.	1.4
Figure (1 •)	Speech development in ADHD children.	1.0

Introduction

Attention deficit hyperactivity disorder (ADHD) is the most common emotional, cognitive and behavioral disorder in children (Spencer et al., ****), affecting about ** to **. of children globally (Nair et al., ****) and diagnosed in about ** to ***. of school aged children (Rader et al., ****).

ADHD is characterized primarily by behavioral symptoms of inattention, hyperactivity, and impulsivity beginning in childhood and often persisting across the life cycle (*Biederman*,).

The diagnosis of ADHD required the identification of specific behaviors that met the criteria of the Diagnostic and Statistical Manual of Mental Disorders, ^{5th} edition, Text Revised (DSM-IV-TR) (APA,).

Although its etiology remains unclear, its strong familial nature and high levels of heritability (*Faraone et al.*,) supported a genetic etiology. Importantly, the neurobiological abnormalities found in children with ADHD were also identified in adults (*Makris et al.*, ****).

ADHD had been hypothesized to be due, in part, to structural defects in brain networks influencing cognitive and motor behavior (Barkley, 1997; Makris et al., 1997).

A growing literature of magnetic resonance imaging (MRI) based volumetric (Valera et al., ****) and cortical thickness (Makris et al., ****) studies identified abnormalities in the dorsolateral prefrontal cortex (DLPFC), the frontoorbital cortex, the anterior cingulate cortex (ACC), the inferior parietal lobule (IPL), and the corticostriatal system, which were structures sub-serving attention and executive functions (EFs). The presence of this array of abnormalities raises a critical question as to whether ADHD is a syndrome that may involve disordered white matter (WM) connections.

At the level of body functions, ADHD affected several global and specific mental functions: intellectual function; impulse control; sustaining and shifting attention; memory; control of psychomotor functions; emotion regulation; higher level cognition, including