

Microbial Removal of some Heavy Metals from Industrial Waste Water

A Thesis

Submitted in Partial Fulfilment of the requirement for M.Sc. Degree in Microbiology

By

Shimaa Abdelaziz Ahmed Attya

Microbiology Department Faculty of Science Ain Shams University (2013)

Faculty of Science Microbiology Department

Microbial Removal of some Heavy Metals from Industrial Waste Water

A Thesis

Submitted to Faculty of Science
Ain Shams University
For Partial Fulfilment of
M.Sc. Degree in Microbiology

By Shimaa Abdelaziz Ahmed Attya B.Sc. Microbiology – Chemistry (2006)

Supervised By

Ass. Prof. Nagwa Ahmed Abdallah

Microbiology Department Faculty of Science Ain Shams University

Prof. Dr. Hassan Amine Abdel-Mageed El-Menoufy

Head of Chemistry of Natural and Microbial Products National Research Center

Dr. Einas Hamed El-Shatoury

Microbiology Department Faculty of Science Ain Shams University

Microbiology Department Faculty of Science Ain Shams University (2013)

Acknowledgement

Firstly and forever, Thanks to Allah, who gave me everything in my life, and I supplicate to Allah to make my life in a perfect way.

I wish to express my greatly thanks to **Dr. Nagwa Ahmed Abdallah**, Assistant Professor in Microbiology Department, Faculty of Science, Ain Shams University, for her kindness and support, for her detailed review, for her valued advice during the preparation of this thesis.

My deep appreciation to my supervisor, **Dr. Hassan El-Menoufy**, Professor in Chemistry of Natural and Microbial products. National Research Center (NRC), for his continuous help and supervision of this work from the initial to the end of the practical part, his encouragement and valuable advices.

My sincere gratitude to **Dr. Einas Hamed El-Shatoury,** Lecture in Microbiology Department, Faculty of Science, Ain Shams University, for her helpful manner, her valued instructions.

I wish to extend my gratefully thanks to my lovely mother, brothers for their patience, encouragement and care. Also to all the members of the Chemistry of Natural and Microbial products Lab in National Research Center, Microbiology Department in Ain Shams University and Trace element lab in Chemistry Administration for their kindness and cooperation which enabled the accomplishment of this work.

Faculty of Science Microbiology Department

Approval Sheet

Name: Shimaa Abdelaziz Ahmed Attya

Title: Microbial Removal of some Heavy Metals from

Industrial waste water.

This Thesis for M.Sc. Degree has been approved by the following:

Supervisors

1. Ass. Prof. Nagwa Ahmed Abdallah

Microbiology Department, Faculty of Science, Ain Shams University.

2. Prof. Dr. Hassan Amine Abdel-Mageed El-Menoufy Chemistry of Natural and Microbial products Department, National Research Center.

3. Dr. Einas Hamed El-Shatoury

Microbiology Department, Faculty of Science, Ain Shams University.

Advisory Committee

Prof. Mohammed El-Saied Osman

Prof. Heba Abdel-Moneim El-Refaee

Prof. Dr. Hassan Amine Abdel-Mageed El-Menoufy

Ass. Prof. Nagwa Ahmed Abdallah

Date of Examination 19 / 1 / 2013

Contents

Title	N
List of Contents	
List of Tables	1
List of Figures	V
List of Abbreviation	Y
Abstract	
Aim of Work	4
1. Introduction	
2. Review of Literature	
2.1. Heavy metals	
2.2. Health Hazard of heavy metals	
2.2.1. Lead Occurrence, exposure and dose]
2.3. Methods of metal remediation	-
2.4. Heavy metals in waste water	-
2.5. Classification of metals	
2.6. Process of metal uptake	4
2.7. The importance of microorganisms in biological waste	
water	4
2.8. Mechanism of biosorption of metals	4
2.9. Effect of some parameters on heavy metal Removal	4
2.9.1. Effect of pH on biosorption	4
2.9.2. Effect of temperature on biosorption	(
2.9.3. Effect of biomass weight on biosorption	•
2.9.4.Effect of initial metal concentration on biosorption	<u> </u>
2.9.5. Effect of contact time on biosorption	<u> </u>
2.9.6. Effect of pre-treatment on biosorption	(
2.10. Biosorbent immobilization	(
2.10.1. Immobilization on solid carrier surfaces	(
2.10.2. Entrapment within a porous matrix	(
2.10.3. Cell flocculation (Aggregation)	3
2.10.4. Mechanical containment behind a barrier	3
2.11.Advantages of immobilized cells over free Cell	
system	(
2.12. Application of biosorption	2
2.13. Bacterial identification	4
2.14.General characters on the organisms used in this	

Title	
biosorption study	
2.15. History of <i>Rhodococcus baikonurensis</i>	
2.16. The genus <i>Streptomyces</i>	
3. Materials and Methods	
3.1. Materials	
3.1.1. Isolation of microorganisms	
3.1.2. Chemicals	
3.1.3.Media used in isolation and cultivation organisms	
3.2. Experimental Methods	
3.2.1. Preparation of the glassware	
3.2.2.Maintenance of the microorganisms and cultivat	
3.2.3.Preparation of microorganism for Biosorpt	ion
process	
3.3. Metal uptake experiments	
3.3.1. Preparation of Metal Solutions	
3.3.2. Lead uptake	
3.4. Identification of the most biosorptive microorganis	
3.4.1.Identification of the Most Biosorpt	
Microorganisms Using 16S rRNA	
3.4.1.1. DNA Extraction	
3.4.1.2. PCR Reaction Mixture	
3.4.1.3. Primers Used in Amplification	
3.4.1.4. PCR Programs	
3.4.1.5. DNA Sequencing and Identification	
3.4.2. Morphological Characteristics of the Tes	
Organisms	
3.5. Determination of parameters affecting kinetics	
lead removal process	
3.5.1. Effect of pH using different buffers	
3.5.2. Effect of Adding Different Metals Separat	•
or in a Mixture on Biosorption Capacity of	the
Tested Organisms	
3.5.3. Effect of different biomass weight on le	
removal by the tested organisms	
3.5.4. Effect of varying the initial lead concentration	ion

	Title
	on lead removal by the tested organisms
3	3.5.5. Effect different contact time on lead removal
	by the tested organisms
3	3.5.6.Effect of biomass pretreatment on lead removal
	3.5.6.1. Pretreatment using acid and alkali
	3.5.6.2. Pretreatment using warm and boiling
	water
	3.5.6.3. Pretreatment using organic solvents
3	3.5.7. Effect of different temperatures on lead
	removal by the tested organisms
3	3.5.8. Effect of different agitation speed on lead
	removal by the tested organisms
3	3.5.9. Applying the optimized conditions on lead
	removal by the tested organisms
3.6. I	Effect of different immobilization agents on lead
	ıptake
	3.6.1. Entrapment in calcium alginate beads
	3.6.2. Immobilization using silica gel
	3.6.3. Immobilization using loofa sponge
4. Results	
	leavy metal analysis of the waste-water sample
	solation of microorganisms
	iosorption capacity of lead by tested organisms
	dentification of the Best Biosorptive Microbes Using
	SS rRNA
	1.4.1. Nucleotide Sequence Analysis of 16S rRNA
	genes
4	4.4.2. Molecular Analysis of the Selected Organisms.
	4.4.2.1. Blast Identity and Multiple Sequence
	Alignment of Isolate B2
	4.4.2.2. Blast Identity and Multiple Sequence
	Alignment of Isolate A8
Δ	4.4.3. Morphology and Some Physiological Characters
٦	of the Tested Organisms
45 T	Determination of parameters affecting kinetics of
	ead removal process
11	

Title	No
4.5.1. Effect of varying pH using different buffers	76
4.5.2.Effect of Different Metals Addition on Lead	
Removal by Rhodcoccus baikonurensis and	79
Streptomyces azureus	
4.5.3. Effect of biomass weights on lead removal by	
Rhodcoccus baikonurensis and Streptomyces	84
azureus	
4.5.4. Effect of varying the initial lead concentration	
on its removal by <i>Rhodcoccus baikonurensis</i>	87
and Streptomyces azureus	
4.5.5.Effect of varying the contact time on lead	
removal by <i>Rhodcoccus baikonurensis</i> and	90
Streptomyces azureus	70
4.5.6.Effect of biomass pretreatment on lead removal	93
4.5.6.1. Effect of acid and alkali pretreatment	93
4.5.6.2.Effect of warm and boiled water	75
pretreatment on lead removal	97
4.5.6.3.Effect of organic solvents pretreatment	<i>)</i>
on lead removal	100
4.5.7.Effect of varying the temperature on lead	100
removal by the tested organisms	103
4.5.8. Effect of agitation rate on lead removal on lead	105
removal by the tested organisms	106
4.5.9. Combining the selected conditions to improve	100
the lead biosorption capacity	109
4.6. Lead removal by immobilized biomass of the tested	10)
organisms	111
4.6.1.Immobilization of the tested organisms using	111
different carriers	111
4.7.Lead removal by immobilized biomass of <i>Streptomyces</i>	111
azureus	115
4.7.1.Effect of different amounts of silica gel on lead	113
	115
removal by silica gel immobilized biomass	113
silica gel immobilized biomass of Streptomyces	118
azureus	110

Title	No
4.7.3.Effect of different biomass weights on lead	
removal by silica gel immobilized biomass of	
Streptomyces azureus	121
4.7.4. Effect of different metal concentration on lead removal by silica gel immobilized biomass of	
Streptomyces azureus	124
4.8. Application studies using Pb ²⁺ polluted water	127
5. Discussion	131
6. Summary	144
7. References	149
Arabic Summary	

List of Tables

Table	Title	Page
(1)	Heavy metals analysis of the waste- water sample used	63
	in the isolation of microbial biomass	
(2)	Biosorption capacity of lead by the tested organisms	65
(3)	Nucleotide blast identity of isolate B2	70
(4)	Nucleotide blast identity of isolate A8	72
(5)	Effect of variable pH values on removal of lead by	78
	Rhodococcus baikonurensis and Streptomyces azureus	
(6a)	Effect of using different individual metals on	80
	biosorption by <i>Rhodococcus baikonurensis</i> and	
	Streptomyces azureus	
(6b)	Effect of metals mixture of on biosorption	82
	Rhodococcus baikonurensis and Streptomyces azureus	
(7)	Effect of biomass weight on lead removal by	85
	Rhodococcus baikonurensis and Streptomyces azureus	
(8)	Effect of varying the initial lead concentration on its	88
	removal by <i>Rhodococcus baikonurensis</i> and	
	Streptomyces azureus	
(9)	Effect of varying the contact time on lead removal by	91
	Rhodococcus baikonurensis and Streptomyces azureus	
(10)	Effect of acid and alkali biomass pretreatment on lead	94
	removal	

Table	Title	Page
(11)	Effect of warm and boiled water pretreatment on lead	98
	removal	
(12)	Effect of organic solvents pretreatment on lead removal	101
(13)	Effect of varying the temperature range on lead removal	104
	by Rhodococcus baikonurensis and Strptomyces azureus.	
(14)	Effect of different agitation rate on lead removal by	107
	Rhodococcus baikonurensis and Strptomyces azureus	
(15)	Effect of combining selected conditions on lead	110
	removal by <i>Rhodococcus baikonurensis</i> and	
	Strptomyces azureus	
(16)	Immobilization of the tested organisms using different	113
	carriers	
(17)	Effect of different amounts of silica gel on lead ions	116
	removal by silica gel immobilized biomass of	
	Streptomyces azureus	
(18)	Effect of residence time on lead removal by silica gel	119
	immobilized biomass	
(19)	Effect of different biomass weights on lead removal by	122
	silica gel immobilized biomass of Streptomyces azureus	
(20)	Effect of different metal concentrations on biosorption	125
	capacity by silica gel immobilized biomass of	
	Streptomyces azureus	

Table	Title	Page
(21)	Percentage of metal removal from industrial waste	128
	water using free biomasses	
(22)	Percentage of metal removal from industrial waste	130
	water using immobilized Streptomyces azureus	

List of Figures

Fig. No.	Title	Page
(1a)	ABI chromatogram of partial sequence of 16S rDNA of isolate B2	67
(1b)	ABI chromatogram of partial sequence of 16S rDNA of isolate A8	68
(2a)	Scanning light micrograph of <i>Rhodococcus baikonurensis</i>	74
(2b)	Scanning light micrograph of Streptomyces azureus	74
(3a)	Scanning electron micrograph of Spore chain of Streptomyces azureus.	75
(3b)	Scanning electron micrograph of Spore Surface of Streptomyces azureus	75
(4)	Effect of variable pH values on removal of lead by Rhodococcus baikonurensis and Streptomyces azureus.	78
(5a)	Effect of using different individual metals on biosorption by <i>Rhodococcus baikonurensis</i> and <i>Streptomyces azureus</i> .	81
(5b)	Effect of metals mixture on biosorption by <i>Rhodococcus</i> baikonurensis and <i>Streptomyces azureus</i>	83
(6)	Effect of biomass weight on lead removal <i>Rhodococcus</i> baikonurensis and <i>Streptomyces azureus</i>	86
(7)	Effect of varying the initial lead concentration on its removal by <i>Rhodococcus baikonurensis</i> and <i>Streptomyces azureus</i> .	89
(8)	Effect of varying the contact time on lead removal by <i>Rhodococcus baikonurensis</i> and <i>Streptomyces azureus</i> .	92
(9a)	Effect of acid pretreatment on lead removal by Rhodococcus baikonurensis and Streptomyces azureus	95
(9b)	Effect of alkali pretreatment on lead removal by <i>Rhodococcus baikonurensis</i> and <i>Streptomyces azureus</i>	96
(10)	Effect of warm and boiled water pretreatment on lead removal.	99

Fig. No.	Title	Page
(11)	Effect of organic solvents pretreatment on lead removal	102
(12)	Effect of varying the temperature range on lead removal by <i>Rhodococcus baikonurensis</i> and <i>Streptomyces azureus</i>	105
(13)	Effect of different agitation speed on lead removal by <i>Rhodococcus azureus</i> and <i>Strptomyces azureus</i>	108
(14)	Effect of using different immobilization carriers on lead removal by the tested organisms	114
(15)	Effect of different amounts of silica gel on lead ions removal by silica gel immobilized biomass of <i>Streptomyces azureus</i> .	117
(16)	Effect of different residence time on lead removal by silica gel immobilized biomass of <i>Streptomyces azureus</i>	120
(17)	Effect of different biomass weights on lead removal by silica gel immobilized biomass of <i>Streptomyces azureus</i>	123
(18)	Effect of different lead concentration on biosorption capacity by silica gel immobilized biomass of <i>Streptomyces azureus</i>	126
(19)	Percentage of metal removal from industrial waste water using free microbial biomasses.	129

List of Abbreviation

ASTM	American Society of Testing and Materials
AAS	Atomic Abrorption Spectrometer
BLAST	Basic Local Alignment Search Tool
BOD	Biological oxygen demand
COD	Chemical Oxygen Demand
cfu	Colony forming unit
$^{\circ}\mathbf{C}$	Degree centigrade
DNA	Deoxy nucleic acid
DDW	Distill Deionized Water
EPA	Environmental Protection Agency
EDTA	Ethylenediamine tetra acetic Acid
g	Gram
G/C	Guanine/Cytosine
g/l	Gram/Liter
h	Hour
IARC	International Agency for Research on Cancer
pН	Hydrogen ion concentration
nm	nanometer
PBS	Phosphate Buffer Solution
PCR	Poly Chain Reaction
ppm	Part Per Million= mg L ⁻¹
rpm	Revolution per minute
rRNA	Ribosomal Ribonucleic acid
TSS	Total Suspended Solids
TEM	Transmission Electron Microscope.
V/V	Volume/Volume
W/V	Weight/Volume