The Effect of Non-Surgical Periodontal Therapy on Salivary Visfatin Concentration in Chronic Periodontitis Patients

Thesis

Submitted to department of Oral Medicine, Periodontology, and Oral Diagnosis

Faculty of Dentistry - Ain Shams University
In partial Fulfillment of the Requirements of Master Degree in
Oral Medicine, Periodontology, and Oral Diagnosis

By

Ahmed Hisham Mossad

B.D.S Misr International University, 2009 *Supervisors*

PROF. DR.KHALED ABD EL-GHAFFAR

Professor in Oral Medicine, Periodontology, and Oral Diagnosis Department- and Minister of Higher Education and Scientific Researches.

PROF. DR. AHMED ABD EL-AZIZ

Assistant Professor in Oral Medicine, Periodontology, and Oral Diagnosis, Ain Shams University

PROF.DR. OLFAT SHAKER

Head of Biochemistry Department, Cairo University
Faculty of Dentistry
Ain Shams University
2017

This thesis is dedicated to my family and fiancée for their endless love, support, and encouragement. They have always been backing me up in my hard times. I am really thankful for having them in my life. Your help is so much appreciated and I hope fulfilling my masters degree, bring you joy and confirm your trust in me.

Firstly, I would like to express my sincere gratitude to my advisor *Prof. Dr Khalid Abd ElGhaffar* Professor of Oral Medicine, Periodontology and Oral Diagnosis Ain Shams University And Minister of Higher Education & Scientific Researches, for the continuous support of my masters study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my master's study.

My sincere thanks also goes to Dr. Ahmed Abd ElAziz lecturer in Oral Medicine and Periodontology department Ain Shams University who provided me with continuous support, motivation, effort, and time. He was always patient with me, and provided me with a lot of knowledge. Without his precious support it would not be possible to conduct this research.

Besides, I would like to thank Prof. Dr. Olfat Shaker head of Biochemistry department Cairo University for her insightful comments and encouragement, and also for helping me assess the results of my thesis biochemically.

Contents

Introduction	1
Review of literature	4
Aim of the study	28
Materials and methods	29
Results	37
Discussion	50
Summary	55
Conclusion	57
Recommendations	58
References	59

List of Tables

Table	Title	Page
No		No
1	Comparison of clinical parameters	37
	between the chronic periodontitis	
	patients (study group) after	
	treatment and healthy control	
	group	
2	Comparison of the clinical	39
	parameters between the study	
	group before and after non-surgical	
	periodontal therapy	
3	Comparison of salivary Visfatin	40
	level in the study group before and	
	after treatment	
4	Comparison of salivary Visfatin	42
	level in the study group before and	
	after treatment and the healthy	
	control group	
5	Correlation between clinical	45
	parameters (PI, GI, PD, CAL) and	
	salivary Visfatin level in the study	
	group before and after non-surgical	
	periodontal treatment	

List of Figures

Figure	Title	Page
No.		No.
1	Diluting the concentration of C4a	
2	with reagent assays	
2	Unstimulated whole saliva collection using Navasesh technique	
3	Salivary samples collected in a	33
	sterile test tube	33
4	Bar chart showing the difference in	38
	scores of plaque, gingival indices,	
	probing pocket depth, and clinical	
	attachment level between the	
	control group and study group after	
	treatment.	4.0
5	Bar chart shows the difference in	40
	plaque index, gingival index and	
	probing pocket depth before and	
	after non-surgical periodontal	
	treatment, while there was no	
	difference in clinical attachment	
	level	
6	Bar chart shows a decrease in	41
	salivary Visfatin level after non-	
	surgical periodontal treatment.	
7	Bar chart showing salivary Visfatin	42
	level in the study group before and	
	after treatment and comparing them	
	to the healthy control group	
8	Scatter plot showing a weak	43
	correlation between Visfatin level	
	and plaque index in the study group	
	before treatment	

9	Scatter plot showing a strong correlation between Visfatin level and probing depth in the study group before treatment	43
10	Scatter plot showing a strong correlation between Visfatin level and clinical attachment level in the study group before treatment	44
11	Scatter plot showing a weak correlation between Visfatin level and plaque index in the study group after treatment	44
12	Scatter plot showing a weak correlation between Visfatin level and gingival index in the study group after treatment	46
13	Scatter plot showing a strong correlation between visfatin level and probing pocket depth in the study group after treatment	46
14	Scatter plot showing a strong correlation between Visfatin level and clinical attachment level in the study group after treatment	48
15	Scatter plot showing a weak correlation between Visfatin level and plaque in the study group after treatment	48
16	Scatter plot showing a weak correlation between Visfatin level and gingival index in the control group	49

17	Scatter plot showing a weak	49
	correlation between Visfatin level	
	and probing pocket depth in the	
	control group	
18	Scatter plot showing a strong	49
	correlation between Visfatin level	
	and clinical attachment level in the	
	control group	

List of Abbreviations

Abb	Meaning
GCF	Gingival Crevicular Fluid
TNF-á	tumor necrosis factor alpha
IL	interleukins
RANKL	Receptor activator of nuclear
	factor kappa B-Ligand
NMN	nicotinamide mononucleotide
PRPP	phosphoribosylpyrophosphate
UTR	untranslated region
NAmPRTase	Nicotinamide
	phosphoribosyltransferase
FK-866	Hydrochloride hydrate
THP-1	Tamm Horsfall protein-1
oxLDLs	oxidized low-density
	lipoproteins
FITC	flourescein iso thio cyanate
IGT	impaired glucose tolerance
NGT	normal glucose tolerance
RA	Rheumatoid arthritis
CRP	C-reactive protein
PBEF1	pre B cell colony enhancing
	factor
RASFs	rheumatoid arthritis synovial
	fluid
MR	magnetic resonance
PGE2	prostaglandin E2
MMP- 9	matrix metalloproteinase 9

BMI	body mass index
LTB4	leukotriene B4
ICAM-1	Intracellular adhesion molecule1
VCAM-1	Vascular cell adhesion molecule
MCP-1	monocyte chemotactic protein-1
CA125	Cancer antigen 125
ROS/RNS	Reactive Oxygen Species/Reactive Nitrogen Species
HRP	Horseradish Peroxidase
OD	Optical density
ELISA	Enzyme linked immunosorbent assay
TN	Troponin

Introduction

Chronic periodontitis is a long-term inflammatory disease of the supporting structures of teeth characterized by remission and exacerbation. The expression of the disease results from the interaction of host defense mechanisms, microbial agents, environmental, genetic factors. The most important periodontal pathogens associated with periodontal disease are Tannerella forsythia, Porphyromonas gingivalis, Treponema intermedia. denticola. Prevotella Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans Miller, et al., 2010.

inflammatory **Imbalance** host in mechanism results in damage of periodontal structures appearing clinically as loss of connective tissue attachment with underlying connective tissue destruction and disorganization of its constituents, alveolar bone resorption and periodontal ligament demolition resulting in increased probing depth, gingival recession, furcation involvement and tooth mobility in advanced stages. Periodontal pathogens produce harmful by-products and enzymes such as hyaluronidases, collagenases, protease, that break down extracellular matrices, such as collagen in order to produce nutrients for their growth and subsequent tissue invasion. Kirkwood, et al., 2007.

Microorganisms causing periodontal disease are predominantly gram-negative anaerobic or microaerophilic bacteria combined together forming a biofilm named dental plaque and are associated with disease initiation and progression. Periodontal disease starts as a microbial challenge between antigens and virulence factors either intrinsic or extrinsic factors inducting a host

response. Host response starts by releasing inflammatory mediators from neutrophils, T cells, macrophages and mast cells. These inflammatory mediators include: tumor necrosis factor, interleukins, matrix metllaoproteinases, and prostaglandins that induce extracellular matrix destruction (*Kirkwood, etal. 2007*). Although these mediators are essential for host defense mechanisms against bacterial inflammation, they initiate periodontal tissue destruction and stimulate bone resorption when present in excessive amounts. *Buduneli, etal., 2011*.

Analysis of cytokine production levels in gingival crevicular fluid has been used as a tool for studying the local host response to a bacterial challenge by which they are used as diagnostic and prognostic markers for periodontal disease (Bae, etal. 2011). Multiple proinflammatory cytokines such as interleukins (IL-1, IL-6, IL-8), tumor necrosis factor alpha (TNF- α); as well as anti-inflammatory cytokines like IL-4 and IL-10, were most commonly studied in the GCF, gingival tissue and serum of the periodontally healthy, gingivitis and chronic periodontitis patients. Increased levels of cytokines may exaggerate systemic also some conditions atherosclerosis, preterm birth, rheumatoid arthritis, and respiratory disease. Buduneli, et al., 2011.

Clinical and radiographic examinations are the main standard methods for diagnosing periodontal disease, while saliva contains immunoglobulins and biomarkers providing additional information for diagnosing periodontal disease and help in developing new methods for treatment and modification of the disease activity. Saliva contains local and systemic biomarkers that can be collected in a non-invasive way *Miller*, *et al.*, *2010*.

Visfatin is one of the main biomarkers present in saliva. It is a considered a pre-B cell colony-enhancing factor that is secreted from multiple types of cells, such as lymphocytes, trophoblasts, skeletal muscle cells, bone marrow cells, and fetal membranes. It is a biomarker that is present in saliva having several functions ranging from pro-inflammatory functions to pleiotropic facilitation of cytokines, growth factors, and enzymes. It has been proven that serum and plasma Visfatin concentrations increase with multiple inflammatory disorders including periodontal disease, where both Gingival Crevicular Fluid (GCF) and serum Visfatin levels increase remarkably. *Pradeep, et al., 2012.*