Magnesium sulfate, as an alternative to sildenafil in treatment of persistent pulmonary hypertension of the new born in Egypt

Thesis

Submitted in the Partial Fulfillment of M.Sc. Degree in Pediatrics

By

Lamiaa Mohammed Abdel Motelb

MBBCH

Faculty of Medicine Cairo University

Under supervision of

Prof. Dr. Mohamed Fawzan Shaltout

Professor of Pediatrics
Faculty of Medicine
Cairo University

Prof. Dr. Hanna Aboulghar

Assistant Professor of Pediatrics
Faculty of Medicine
Cairo University

Prof. Dr. Rania Ali Hegazy

Lecture of Pediatrics
Faculty of Medicine
Cairo University

Faculty of Medicine
Cairo University
2009

Abstract

Persistent pulmonary hypertension of the newborn (PPHN), it is characterized by failure of the normal postnatal fall in pulmonary vascular resistence, it can cause both immediate and long term complication.

There are various modalities for treatment of PPHN. ECMO & INO are effective in treatment of PPHN but not available in developing countries.

Our study was done to light the comparison between the effects of oral sildenafil and magnesium sulfate in the treatment of PPHN.

Our study is prospective cohort review included 20 neonates. The neonates were divided into two groups: the first group represented 10 neonates treated with sildenafile, whereas the second group represented 10 neonates treated with magnesium sulfate. We found a statistically significant difference (P value 0,014) in estimated pulmonary artery pressure after another 3 days of treatment by sildenafil or magnesium sulfate. We also revealed that good improvement in Sao2&ABG with two groups but earlier in sildenafil group. Limited side effects and good outcome was observed in both groups.

Conclusion: we concluded that MgSo₄ can be used as an alternative treatment to sildenafil in treatment of PPHN in Egypt.

Keywords: Persistent pulmonary hypertension of the newborn (PPHN), sildenafil, Magnesium sulfate (MgSo₄).

Acknowledgement

A word of thanks to **Allah**, the source of all knowledge, by whose abundant grace, this work has come to life.

I feel like showing my greatest and deepest appreciation to the most generous, kind and patient team, I have got the honor to work with.

I wish to express my appreciation and sincere gratitude to **Prof. Dr. Mohamed Fawzan Shaltot**, *Professor of Pediatrics*, *Faculty of Medicine*, *Cairo University*, for his kind help, indispensable advice and encouragement from the start of this work.

I would like to express my deep everlasting gratitude to **Dr. Hanna Aboulghar**, *Professor of Pediatrics*, *Cairo University*, for her supervision, fruitful advice and for her constant valuable guidance and for her effort in the presentation of this work.

I am very grateful to **Dr. Rania Ali Hegazy** *Professor of Pediatrics, Cairo University*, not only for her kind assistance and support, but also for her fruitful advice, constant valuable guidance.

Last but not least, I would like to thank all the staff members of the pediatrics department in **Kasr El-Aini University Hospital & Ahmed Maher Teaching hospital** for their help, support and cooperation especially **Dr. Ziad Mohi El Din**, *the head of neonatology unit in Ahmed Maher teaching* hospital who provides me with care, support and knowledge.

Contents

	Page
• List of tables	I
• List of figures	II – III
• List of abbreviations	IV– VI
• Introduction	1-2
• Aim of Work	3
• Review of literature	
Chapter 1: Anatomy & Physiology of pulmonary arterial vascular	4-23
Chapter 2: PPHN	24-50
Chapter 3: Treatment of PPHN	51-76
Chapter 4: Sildenafil & Magnasium sulfate	. 77-87
• Patients and Methods	88-95
• Results	96-107
• Discussion	108-
	111
• Conclusion and Recommendation	112
• Summary	113
• References	114-
	133
Arabic Summary	134

List of Tables

No.	Title	Page
1	Neonatal conditions that may interfere with normal	
	maturation of pulmonary arterioles	20
2	Cardiac lesion associated with pulmonary hypertension	36
3	Echocardiographic findings in PPHN	38
4	Non invasive estimation of PAP from Echocardiographic	39
	parameters	
5	Intimal remodeling.	44
6	Medial remodeling.	45
7	Clinical finding at various met hemoglobin concentration	69
8	Contraindication of ECMO	71
9	Cardiovascular effects of sildenafil	81 - 82
10	Mean Age & gestational age in our study groups	101
11	Manifestation of PPHN between the study group	102
12	Mean of associated PDA & treatment of PDA between the	
	study groups	103
13	EPAP inour study groups	105
14	Duration to improvement of Sao2 &ABG by days in our	
	study groups	106

List of Figures

No.	Title	Page
1	Formation of cardiac loop Aortic arches	4
2	Aortic arches	5
3	Development of the conotruncal ridges	6
4	Pulmonary artery and vein	8
5	Diagram of the alveoli with both cross-section and external	
	view	9
6	Vascular supply to the lung	9
7	Pulmonary and bronchial circulation	11
8	Fetal circulation.	15
9	Fetal circulation and oxygen saturation	17
10	Post natal changes in fetal circulation	19
11	Post natal changes in pulmonary vascular resistance	20
12	Change in pulmonary artery pressure, pulmonary blood flow and	
	PVR, during the 7 weeks before birth, at birth and in the 7 weeks	
	after birth	21
13	Pressure pulse contours in the right ventricle, pulmonary artery	
	and aorta	23
14	Pressure in the different vessels of the lungs S. systolic; M,	
	mean; D, diastolic	23
15	Histopathologic feature of pulmonary hypertension	40
16	Histologically, blood vessels consist of concentric layers	40
17	Pathobiology of PH	41

18	Schematic representation of the potential culture mechanisms	
	involved in hypoxic-induced remodeling of a non muscular	
	pulmonary artery	43
19	Mechanism of PH induced by loss of BMPR-2	47
20	Generation and action of endothelin-1	62
21	Various substances that decrease PVR	65
22	Metabolism of endogenous nitric oxide in the lung	67
23	ECMO circuit diagram	75
24	Mechanism of vasodilatory and anti proliferate effects of	
	sildenafil	78
25	Estimation of systolic pulmonary artery pressure	90
26		94
	Measurement of peak velocity of TR	
27	Gender distribution in sildenafil group	100
28	Gender distribution in MgSo4 group	100
29	Mode of delivery between the study groups	101
30	Treatment of associated PDA between the study groups	103
31, 32	Mean EPAP values over the study period between the study	
	groups	104
33	Duration to improvement of Sao2 (by days) between the study	
	groups	105
34	Duration to improvement of ABG (by days) between the study	
	groups	106
35	Outcome between the study groups	107

List of Abbreviation

AaDo2 : Alveolar- to arterial oxygen gradient

ABG : Arterial Blood gases

ACD : Alveolar Capillaries dysplasia

AMP : Adenosine monophosphate

ANP : A – type natriuretic peptide

AVMS : Arterio- venous malformations

BMP : Bone morphogenic protein

BMPR II : Bone morphogenic protein receptor II

BNP : B- type natriuretic peptide

CAM : Congenital adenomotoid malformation

CAMP : Cyclic adenosine monophosphate

CBC : Complete Blood count

CDH : Congenital Diaphragmatic hernia

CGMP : Cyclic guanosine mono phosphate

CS : Cesarean section

CVP : Centeral venous pressure

ECMO : Extra-corporeal membrane oxygenation

ETA : Endothlin receptor A

ET-1 : Endothelin -1

ETB : Endothelin receptor B

FIO2 : Inspired oxygen concentration

GMP : Guanosine mono phosphate

GC : Guanylate cyclase

INO : Inhaled nitric oxide

IP3 : Inositol triphosphate

IVC : Inferior vena cava

LA : Left atrium

LV : Left ventricle

LVO : Left ventricular out put

MAP : Mean air way pressure

MAS : Meconium aspiration syndrome.

MPAP : Mean pulmonary artery pressure

No : Nitric oxide

NOS : Nitric oxide synthetase

NSAID : Non steroidal Anti-inflammatory drug

OI : Oxygenation index

PA : Pulmonary artery

PAP : Pulmonary artery pressure

PAPs : Pulmonary artery sysotic pressure

Pao2 : Partial pressure of arterial oxygen

PDA : Patent ductus arterious

PDE5 : Phospho diesterase 5

PEDP : Pulmonary End diastolic pressure

PFC : Persistent Fetal circulation

PFO : Persistent foramen oval

PGI2 : Prostacyclin

PIP : Peak inspiratory pressure

PKA : CAMP- dependend protein Kinase

PKC: Protein Kinase C

PKG : CGMP – dependend protein kinase

PPHN : Persistent pulmonary hypertension of newborn

PPM : Part per million

PVR : Pulmonary vascular resistence

RA : Right atrium

RDS : Respiratory distress syndrome

RV : Right ventricle

RPEP : Right ventricle pre- ejection period

RVO : Right ventricular out put

RVET : Right ventricular ejection time

Sao2 : Oxygen saturation

SERT : Serotonin transporter

SGC : Soluble guanyle cyclase

SMC : Smooth muscle cell

SSRIs : Selective serotonine reuptake inhibitors

SVC : Superior vena cava

TGF-B: Transforming growth factor-B

TPV: Time to peak velocity

TR : Tricuspid regurgitation

TTF-1 : Thyroid transcription factor 1

V-A : Veno- arterial

VC : Vasoconstriction

V-V : Veno-venous

WBC: White blood cell

INTRODUCTION

Persistent pulmonary hypertension in the newborn (PPHN) is a neonatal emergency due to the failure to achieve normal cardiopulmonary adaptation following delivery. PPHN still remains a challenging condition with high morbidity and mortality. (*Kleigman et al.*, 2007)

The aim of treatment is to lower pulmonary vascular resistance, maintain systemic blood pressure, reverse right to left shunt, and improve arterial oxygen saturation. (Abman et al., 2004)

A variety of treatment include hyperventilation, pressor agents surfactant, sedation, Alkalinization, vasodilatation e.g (tolazoline, inhaled nitric oxide, Magnesium sulfate, Adenosine, sildenafil) and Extracorporeal membrane oxygenation ECMO (*Donn et al.*, 2007).

PPHN can occur as a primary condition or be secondary to meconium aspiration, respiratory distress syndrome, infection or congenital diaphragmatic hernia (*Finer 2004*).

PPHN occurs in approximately 1.9 per 1000 new born and may be more frequent in developing countries. There is strong evidence for the use of inhaled nitric oxide (INO) and ECMO in the treatment of PPHN. However, many developing countries do not have access or the technical expertise required for these expensive therapies (*Chambers et al.*, 2006).

MgSo₄ is a natural Ca channel blocker that antagonizes Ca ion entry into smooth muscle cell thus promoting vasodilatation. MgSo₄ is a safe and chaper alternative for 1st line treatment in moderate PPHN and was chosen to be alternative therapy for PPHN when other conventional treatments fail, are contraindicated or are not available (*Chandran*, 2004).

Sildenafil is a potent and selective inhibitor of cGMP-specific PDE5. This isoenzyme metabolizes cGMP which is the Second-Messenger of NO and a principle mediator of smooth muscle relaxation and vasodilatation. By inhibiting the hydrolytic breakdown of CGMP, sildenafil prolongs the action of CGMP. This results in augmented smooth muscle relaxation and cause pulmonary vasodilatation. (*Reffelmann and Kloner*, 2003). Inhibition of PDE5 lead to increase the concentration of cyclic-AMP and GMP locally, which in turn leads to relaxation of pulmonary vasculature smooth muscles so sildenafil decreases pulmonary vascular resistance in pulmonary hypertensive neonate.(Humbert, 2004)

AIM OF THE WORK

The aim of this study was to compare the use of sildenafil versus magnesium sulfate as pulmonary vasodilator in the treatment of persistent pulmonary hypertension of the newborn in addition to the conventional therapy in these newborn. Duration to improvement, degree of improvement, side effects and outcome were compared.

EMBRYOLOGICAL DEVELOPMENT OF PULMONARY ARTERIAL VASCULATURE:-

Development of pulmonary arteries:

The vascular supply to lung buds arises from the paired sixth aortic arches, which arises from truncus arteriousus, the upper end of bulbus cordis, as it represents the most cranial part of heart tube.

The paired sixth aortic arches give off branches to developing lung each one divides into ventral (medial) & dorsal (lateral) segment. The ventral segment of the right 6th aortic arch forms the proximal part of the right pulmonary artery which enters the right lung bud while its dorsal segment disappear (loses its connection within dorsal aorta). The ventral segment of the left 6th aortic arch forms the main pulmonary artery and the proximal part of left hilar branches which enters the left lung bud while the dorsal segment persists during the intrauterine life forming the ductus arteriosus which forms a connection between the left pulmonary artery and the arch of the aorta. The aortic arches connect the aortic sac ventrally with the 2 dorsal aorta dorsally which fuses together form common dorsal aorta. (*Risau et al.*, 1990).

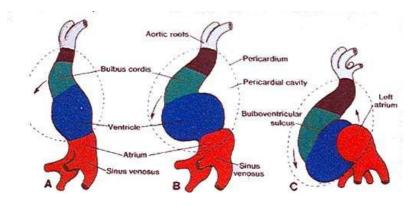


Figure (1): Formation of cardiac loop A: 22 days, B; 23 day, C: 24 day Broken Line: pericardium

(Sadler, 2004)

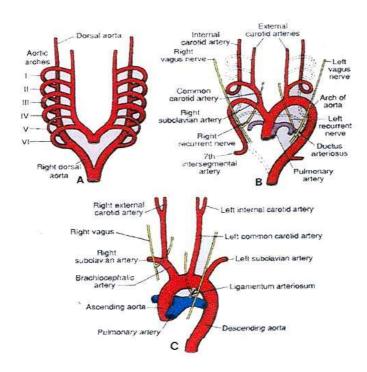


Fig (2):-A. Aortic arches and dorsal aortae before transformation into the definitive vascular pattern. B. Aortic arches and dorsal aortae after the transformation .Broken lines, obliterated components. Note the patent ductus arteriosus and position of the seventh intersegmental artery on the left C.The great arteries in the adult. Compare the distance between the place of origin of the left common carotid artery and the left subclavian in B and C. After disappearance of the distal part of the sixth aortic arch (the fifth arches never form completely), the right recurrent laryngeal nerve hooks around the right subclavian artery. On the left the nerve remains in place and hooks around the ligamentum arteriosum (Sadler, 2004).

Besides the different origin of pulmonary artery segment, two other processes probably contribute to the development of lung vasculature: Angiogenesis and vasculogenesis (*Morin and stermark*, 1995).

Course of Pulmonary artery in relation to Aorta:

Two ridges called the right & left major bulbar cushions develop inside the distal part of bulbus cordis & descend in the direction of ventricle following a spiral course. Later they fuse together forming aortico-pulmonary septum. The distal part of bulbus cordis become