Ain Shams University Faculty of Science Geology Department

PETROGRAPHIC EVALUATION AND PHYSICO-MECHANICAL PROPOERTIES OF CONCRETE MADE WITH DIFFERENT KINDS OF NATURAL AGGREGATES

Thesis submitted to award Ph.D in Science (Geology)

By
Mohamed Ezzat Taha
M.Sc. in Geology (2011)

To

Geology Department
Faculty of Science
Ain Shams University
Cairo - A R E

Ain Shams University Faculty of Science Geology Department

PETROGRAPHIC EVALUATION AND PHYSICO-MECHANICAL PROPOERTIES OF CONCRETE MADE WITH DIFFERENT KINDS OF NATURAL AGGREGATES

Thesis submitted to award Ph.D in Science (Geology)

By Mohamed Ezzat Taha M.Sc. in Geology (2011)

Supervised By

Prof. Dr. Hafez Shamseldin Abdelwahab

Professor of Mineralogy and Petrology, Department of Geology, Faculty of Science, Ain Shams University

Prof. Dr. Nasser Gamal Abdel Ghafour

Professor of Geology and Technology of Building Raw Materials, Building Raw Materials and Industrial Processing Institute, Housing and Building National Research Center

To

Geology Department
Faculty of Science
Ain Shams University
Cairo - A R E

Ain Shams University Faculty of Science Geology Department

APPROVAL SHEET

Ph.D. Thesis:

Name of Student: Mohammed Ezzat Taha

Title of Thesis: PETROGRAPHIC EVALUATION AND PHYSICO-

MECHANICA PROPOERTIES OF CONCRETE MADE WITH DIFFERENT KINDS OF NATURAL

AGGREGATES.

Approved by:

Prof. Dr. Hafez Shamseldin Abdelwahab

Professor of Mineralogy and Petrology, Department of Geology, Faculty of Science, Ain Shams University

Prof. Dr. Nasser Gamal Abdel Ghafour

Professor of Geology and Technology of Building Raw Materials, Building Raw Materials and Industrial Processing Institute, Housing and Building National Research Center

Prof. Dr. Gamal El-Din Mohamed Hassan Attia

Professor of Mineralogy and Petrology, Department of Geology, Faculty of Science, Helwan University

Prof. Dr. Mounir Mohamed Kamal

Prof. of Strength and Testing of Materials, Department of Civil Engineering, Faculty of Engineering, Menoufia University

Head of Geology Department

Prof. Dr. Abd El-Mohsen Mohammed Morsi

ACKNOWLEDGEMENT

Firstly and foremost, my deepest gratefulness, thankful and indebtedness as to merciful "ALLAH", who gave me everything I have in the ability and patience for accomplishing this work.

The present work was carried out under the direct joint supervision of **Prof. Dr. Hafez Shamseldin Abdelwahab**, Professor of Mineralogy and Petrology, Faculty of Science, Ain Shams University, and **Prof. Dr. Naser Gamal Abdel Ghafour**, Professor of Geology and Technology of Building Raw Materials, Building Raw Materials and Industrial Processing, Research Institute, Housing and Building, National Research Center. The writer is deeply indebted to them for suggesting the point of research, guidance and encouragement during the progress of all steps of the work and the preparation of the thesis.

My deep and sincere thanks and gratitudes to **Prof. Dr. Ali Hassan Ali Ahmed** Head of Raw Building Materials
Technology and Processing, Research Institute and my
colleagues at Raw Building Materials Technology and
Processing Research Institute.

Dedication of this work to my Parents, my Wife, and my Family for their support, tolerance and patience.

ABSTRACT

Concrete is a rapidly continuously changing system, starting from its mixing to its placement. The strength, durability, and dimensional stability of concrete have been recognized as the three fundamental parameters for a good concrete. This research aims to shed highlight on the role of petrographic evaluation of aggregates and experimental concretes subjected to the influence of induced physical (heat) and chemical (alkali attack) deteriorations, with the aid of basic scientific methods in diagnosing concrete problems, in a trial to solve possible associated durability issues.

This research involves assessment of Wadi Abu-Saiyala dolomite, Widan El-Faras basalts, and Homra El-Girigab granite aggregates to test their suitability in concrete industry. Further, for this purpose casting three experimental concretes with arbitrary mix design 1: 2: 4 (cement: fine aggregate: coarse aggregate, w/c 0.55), and further water curing and subjecting to the influence of elevated temperatures (300°, 600°, and 800°C) with duration of two hours, and alkali attack (1.25% Na₂O equivalent of cement) on concrete prisms for a whole year were carried out. These water cured and influenced concretes are evaluated for their performance: visually. mineralogically, physically, mechanically, and petrographically using transmitted (thin sections) and reflected microscopes (fluorescent slabs), with detailed micro structural investigations conducted on polished concrete sections using SEM (BSE).

The assessment of different kinds of aggregates; physically, chemically and mechanically revealed that all the used aggregates are considered suitable for concrete purposes. The petrographical investigation performed according to ASTM C295 (2013), disclosed that the examined dolomite is distinguished in two lithofacies; dolosparstone and dolomicrosparstone, the examined basalts show occasional altered grains, and the examined red granites partially contain seritized potash feldspars.

The results of physico-mechanical investigations on water cured concretes; disclosed that they are categorized as normal weight concrete, and that the concretes casted with dolomite and granite aggregates is comparatively performed good, while the concrete casted with basalt aggregates is comparatively performed badly. The petrographic evaluation of concretes cured in water for 28 days and 12 months examined under transmitted and reflected light, indicated that the chemical interaction which is shown in dolomite aggregates, while the mechanical interactionis shown in basalts and granite aggregates is

largely responsible for the concrete performance. Further, the petrographical evaluations and SEM investigations revealed probable signs of deterioration, occurring in concrete casted with basalt aggregates, owning to swelling of clay minerals encountered in basaltic matrix

The alkali attacked concretes, were evaluated petrographically and investigated using SEM, for possible occurrence of alkali aggregate reactions (AAR) confirming to ASTM C1293 (2008) and ASTM C856 (2013), revealed that some dolomite grains showed alkali carbonate reaction (ACR), resulting from dedolomitization occurring along peripheries of dolomite grains. Whereas some reactive basalts and granite grains showed expansive alkali silica reaction (ASR), resulting from partial dissolution of their mineral components, and deposition of the reaction products (alkali silica gel) in cracks and voids.

The heated concretes evaluated physically, mechanically, petrographically, and micro structurally, using SEM (BSE), revealed that the mineralogic composition, chemical transformations (dehydration of cement paste, decarboxylation of portlandite, dehydroxylation of clay minerals, and decarbonation of dolomite), textural properties (intercrystalline cracks and cleavage planes), thermal incompatibility, thermal conductivity, and thermal expansion occurring in cement paste and aggregates, are the key factors controlling the performance of concrete subjected to elevated temperatures.

In order to obtain a good performing and durable concrete, which can withstand physical and chemical deteriorations, appropriate aggregate should be used; avoiding alterations, mineral disorders, textural defects, and large thermal incompatibility, between the used aggregates and cement paste in concrete.

CONTENTS

1. Introd	duction
1.1	Introduction
1.2	Aim of the present study
1.3	Location of aggregate quarries
1.4	Methodology
1.4.1	Aggregates
1.4.1.1	Physical tests
1.4.1.2.	Chemical tests
1.4.1.3	Mechanical test
1.4.1.4	Mineralogical examination
1.4.1.5	Petrographic investigation
1.4.2	Concrete
1.4.2.1	Mix design, casting, and curing
1.4.2.2	Heated and chemically attacked concrete
1.4.2.3	Mineralogical examinations
1.4.2.4	Physico-mechanical tests
1.4.2.5	Petrographic investigations
1.4.2.6	Chemical tests.
1.4.2.7	SEM investigations.
1.5	Geological background
1.5.1	Dolomite aggregates quarry
1.5.2	Widan El-Faras basalt aggregates quarry
1.5.3	Homra El-Girigab red granite quarry
2. Assess	sment of aggregates and concrete
2.1	Introduction
2.2	Coarse aggregates
2.2.1	Physical properties investigations
2.2.2	Chemical properties investigations
2.2.3	Mechanical property investigations
2.2.4	Mineralogical investigations
2.2.5	Petrographic evaluation
2.2.5.1	Dolomite aggregates
2.2.5.2	Basalt aggregates

2.2.5.3	Granite aggregates	64
2.3	Fine aggregates	67
2.4	Cement	68
2.5	Concrete	69
2.5.1	Mix design and curing regime	70
2.5.2	Physico-mechanical investigations	72
2.5.3	Petrographic evaluation of concrete	74
2.5.4	Cement paste/aggregate interface	79
2.5.5	SEM investigations	8 0
	graphic evaluation of alkali aggregate	85
	ions in concrete	
3.1	Introduction.	85
3.2	Dolomite concrete	88
3.2.1	Petrographic evaluation	88
3.2.2	SEM investigations	89
3.3	Basalt concrete	91
3.3.1	Petrographic evaluation	91
3.3.2	SEM investigations	95
3.4	Granite concrete	96
3.4.1	Petrographic evaluation	96
3.4.2	SEM investigations	99
	graphic evaluation of heated concrete	103
4.1	Introduction	103
4.2	Heated basalt concrete	103
4.2.1	Macroscopic investigations	103
4.2.2	Mineralogical investigations	105
4.2.3	Physico-mechanical investigations	100
4.2.4	Petrographic evaluation	109
4.2.4.1	Stereomicroscope investigations	109
4.2.4.2	Ordinary polarized microscope investigations	113
4.2.5	SEM investigations	115
4.3	Heated dolomite concrete	117
4.3.1	Macroscopic investigations	117

4.3.2	Mineralogical investigations	120
4.3.3	Physico-mechanical investigations	121
4.3.4	Petrographic evaluation	123
4.3.4.1	Stereomicroscope investigations	123
4.3.4.2	Ordinary polarized microscope investigations	127
4.3.5	SEM investigations	127
4.4 4.4.1	Heated granite concrete	130 130
4.4.2	Mineralogical investigations	133
4.4.3	Physico-mechanical investigations	133
4.4.4	Petrographic evaluation	136
4.4.4.1	Stereomicroscope investigations	136
4.4.4.2	Ordinary polarized microscope investigations	138
4.4.5	SEM investigations	140
5. Image	analysis	144
5.1	Introduction	144
5.2	Image acquisition	145
5.3	Image processing.	145
	nery and Conclusionees	152 161

FIGURES

Figure (1)	Satellite Google image (2015) showing location map of aggregates quarries	12
Figure (2)	Procedures for casting concrete prism according to ASTM C1293 (2008)	20
Figure (3)	Flowchart presentation of procedures of concrete mixing, curing, induced deterioration, and examination	28
Figure (4)	A specimen cutting out of half of 100 mm cube	32
Figure (5)	Geological map of Gabal Ataqa (modified after El-Akkad and Abdallah ,1971)	39
Figure (6)	Stratigraphic sequence of Wadi Abu-Saiyala, Suez (after Wanas, 2001)	40
Figure (7)	Geological map of El-Fayum depression (after Kushy et al., 2011)	44
Figure (8)	Stratigraphic sequence of El-Fayum area modified (after Naim et al., 1993)	45
Figure (9)	Geological map of Gabal Homra El-Girigab (modified after Egyptian general petroleum corporation, 1: 500, 000)	48
Figure (10)	Grading curves of concrete coarse aggregates	52
Figure (11)	Alkali expansions of concrete prisms (ASTM C1293, 2008)	57
Figure (12)	XRD pattern of Wadi Abu-Saiyala dolomite aggregates	60
Figure (13)	XRD pattern of Widan El-Faras basalt aggregates	60
Figure (14)	XRD pattern of Homra El-Girigab granite aggregates	61
Figure (15)	Photomicrographs of thin sections of dolomite aggregate, XPL	62

Figure (16)	Photomicrographs of thin sections of	64
	basalt aggregate, XPL	
Figure (17)	Photomicrographs of thin sections of	66
	granite aggregates, XPL	
Figure (18)	Photographs of concrete polished slabs	71
	showing basic macro structure of	
	Portland cement concretes	
Figure (19)	Compressive strength of water cured	74
	concretes	
Figure (20)	Photomicrographs of thin sections	76
	showing one month verses one year water	
	cured concretes, XPL	
Figure (21)	Fluorescent photomicrographs of polished	77
_	sections of basalt concrete	
Figure (22)	Photomicographs of polished sections of	78
	one year deteroriated basalt concrete	
Figure (23)	Photomicrographs of thin sections	79
	showing mineralization in one month	
	granite concrete air void, XPL	
Figure (24)	Photomicrographs of polished sections	81
	showing the cement paste/aggregate	
	concrete interfaces	
Figure (25)	SEM-BSE micrographs showing micro	84
	structure of one year water cured	
	concretes	
Figure (26)	Photomicrographs of polished sections of	90
F: (25)	dolomite concrete with ACR	00
Figure (27)	Photomicrographs of thin sections of	90
	dolomite concrete showing dedolom-	
	itization and carbonate halo formation	
Figure (20)	along dolomite grain periphery, XPL	02
Figure (28)	SEM-BSE micrographs and EDX spectra	92
	of reacted dolomite aggregate in dolomite	
	concrete	

Figure (29)	Photomicrographs of polished sections of basalt concrete with reactive basalt	94
Figure (30)	grains	95
	concrete showing a partially filled air void with alkali silica, XPL	
Figure (31)	SEM-BSE micrographs and EDX spectra of reactive basalt grain in basalt concrete.	97
Figure (32)	Photomicrographs of polished sections of granite concrete with ASR	100
Figure (33)	Photomicrograph of a thin section of granite concrete showing an air void filled with alkali silica gel, XPL	101
Figure (34)	SEM-BSE micrographs and EDX spectra of granite in concrete	102
Figure (35)	Photographs showing the change in colouration and surface texture of the surface of heated basalt concrete cube specimens.	105
Figure (36)	XRD patterns of heated basalt concrete	106
Figure (37)	Weight loss in heated basalt concrete cube specimens	108
Figure (38)	Residual compressive strength of heated basalt concrete	108
Figure (39)	Photomicrographs of polished sections of heated basalt concrete showing change in cement paste and minerals colouration and fluorescence degree, and increasing of micro crack density with increasing temperature.	112
Figure (40)	Photomicrographs of a thin sections heated basalt concrete showing discolouration and development of micro crack in minerals and cement paste with increasing temperature, XPL	114

Figure (41)	SEM-BSE micrographs showing change in micro structure and grey levels of the components of heated basalt concrete with increasing temperature	118
Figure (42)	<u> </u>	120
Figure (43)	XRD patterns of heated dolomite concrete	121
Figure (44)	Weight loss in heated dolomite concrete cube specimens	122
Figure (45)	Residual compressive strength of heated dolomite concrete	122
Figure (46)	Photomicrographs of polished sections of heated dolomite concrete showing change in cement paste and minerals colouration and fluorescence degree, and increasing in micro crack density with increasing temperature.	126
Figure (47)	_	128
Figure (48)	SEM-BSE micrographs showing change in micro structure and grey levels of the components of heated dolomite concrete with increasing temperature	131
Figure (49)	Photographs showing the change in colouration and surface texture of the surface of heated granite concrete cubespecimens	132
Figure (50)	XRD patterns of heated granite concrete	133
Figure (51)	Weight loss in heated granite concrete cube specimens	134

Figure (52)	Residual compressive strength of heated granite concrete.	136
Figure (53)	Photomicrographs of polished sections of heated granite concrete showing change in cement paste and minerals colouration and fluorescence degree, and increasing in micro crack density with increasing temperature.	139
Figure (54)	Photomicrographs of a thin sections of heated granite concrete showing discolouration and development of micro cracks in minerals and cement paste with	141
Figure (55)	increasing temperature, XPL	143
Figure (56)	Histogram of heated basalt concrete image	147
Figure (57)	Image analysis of BSE image of basalt concrete heated to 300°C	149
Figure (58)	Image analysis of BSE image of basalt concrete heated to 600°C	150
Figure (59)	Image analysis of BSE image of basalt concrete heated to 800°C	151

TABLES

Table (1)	Advantages of petrographic examination	6
T-11- (2)	of concrete	0
Table (2)	Thermal conductivity of used materials (after Japan Concrete Institute, 1982)	8
Table (3)	Physical properties of examined concrete	50
Table (4)	coarse aggregates Mechanical and chemical properties of	58
Tuble (1)	examined concrete coarse aggregates	
Table (5)	Physical and chemical properties of examined concrete fine aggregates	68
Table (6)	Physical and mechanical properties of OPC	68
Table (7)	Chemical analysis of OPC	69
Table (8)	Concrete mix proportions	72