ANATOMICAL, RADIOLOGICAL AND CLINICAL STUDY OF PARAVERTEBRAL ANALGESIA IN THORACIC SURGERY

Thesis

Submitted for partial fulfillment of MD Degree in Anesthesiology and Pain Relief

Presented by

Ekramy Mansour Abd EI Ghafar

M.B.B.Ch. & MSc

Supervised by

Prof. Dr.

Magdy Ramzy Iskandar

Professor of Anesthesiology And Pain Relief National Cancer Institute Cairo University

Dr.

Magda Shokry Azer

Assistant Professor of Anesthesiology And Pain Relief National Cancer Institute Cairo University Prof. Dr.

Samia Yahia Akl

Professor of Clinical Pathology National Cancer Institute Cairo University

Dr.

Aiman Ali Ghoneim

Assistant Professor of Anesthesiology And Pain Relief National Cancer Institute Cairo University

National Cancer Institute Cairo University 2009

CONTENTS

	Page
Introduction	1
Aim of the Work	4
Chapter 1: Anatomical Considerations	5
Chapter 2: Pain Management After Thoracic Surgery	21
Chapter 3: Thoracic Epidural Analgesia	36
Chapter 4: Thoracic Paravertebral Block	48
Patients and Methods	75
Results	87
Discussion	112
Recommendations	١٣٣
Conclusions	١٣٤
Summary	١٣٦
References	1 2 .
Arabic Summary	

LIST OF FIGURES

		Page		
Fig. R1	Cryomicrotome			
Fig. R2	Drawing of the compartments of the epidural space as seen in			
	cryomicrotomy	6		
Fig. R3	Midline Sagittal View Of The Lumbar Spine.			
Fig. R4	Midline Sagittal MRI View of the Lumbar Spine.			
Fig. R5 Fig. R6	Axial View Through A Lumbar Vertebra. Midline Sagittal View Of The Thoracic Spine			
Fig R7	Schematic representation of longitudinal spread in the epidur			
	space.	15		
Fig R8	Schematic representation of horizontal spread in the epidural	1.6		
	space	16		
Fig. R9	Anatomy of the thoracic paravertebral space			
Fig. R10 Saggital section through the thoracic paravertebral sp				
	showing a needle that has been advanced above the transverse	18		
	process			
Fig. R11	Scheme showing a skin incision of thoracotomy in			
	posterolateral thoracotomy, muscle-sparing thoracotomy	22		
	(MST), and video-assisted thoracic surgery (VATS)			
Fig. R12	Patient position for thoracic paravertebral anesthesia			
Fig. R13	Spinal Needles	50		
Fig. R14	Tuohy Needle			
Fig. R15	Surface anatomy landmarks to identify spinal levels and estimate the position of the transverse processes			
Fig. R16	Needle Positioning	52		
Fig. R17	Saggital section through the thoracic paravertebral space showing a needle that has been advanced above the transverse			
Fig. R18	process. The needle is inserted perpendicular to the skin, while			
	constantly paying attention to the depth of needle insertion and	53		
	the medial-lateral needle orientation.			

Fig. R19	Thoracic paravertebral blockade results in ipsilateral				
	dermatomal anesthesia. The location of the resulting	58			
	dermatomal distribution of anesthesia or analgesia is a function	36			
	of the level blocked and the volume of local anesthetic injected.				
Figures	Radiographic images showing the extent of spread of local				
1-4	anesthetic solution through intercostal spaces in the	89			
	paravertebral group.				
Figure 5	Radiographic image showing the extent of spread of local				
	anesthetic solution through intercostal spaces in the intercostal	89			
	group.				
Fig. 6	Mean pulse rate in groups under study				
Fig. 7	Mean systolic blood pressure in groups under study				
Fig. 8	Mean diastolic blood pressure in groups under study				
Fig. 9	VAS score during the first 4 hours in the two studied groups				
Fig. 10	VAS score from 4 hours to 48 hours in the two studied groups				
Fig. 11	The number of patients needed to increase the rate of infusion	100			
	during continuous analgesia in the two studied groups				
Fig. 12	Mean Peak expiratory flow rate (PEFR) in the two studied	103			
	groups during the 24 postoperative hours	102			
Fig. 13	Mean heart rate during the 48 hours postoperative in the two	104			
	studied groups	104			
Fig. 14	Mean systolic blood pressure during the 48 hours postoperative	106			
	in the two studied groups	100			
Fig. 15	Mean diastolic blood pressure during the 48 hours	107			
	postoperatively in the two studied groups	107			
Fig. 16	Mean plasma cortisol level in the two studied groups during the	109			
	24 postoperative hours	10)			
Fig. 17	Mean blood glucose level in the two studied groups during the	110			
	24 nostonerative hours	110			

LIST of TABLES

		Page		
Table R1	Advantages of Thoracic Paravertebral Block	62		
Table R2	Reported Indications for Thoracic Paravertebral Block			
Table R3	Drug and Dosage for Thoracic Paravertebral Block			
Table 1	Demographic and clinical characteristics of the two studied groups			
Table 2	Extent of spread of injected dye (number of intercostal space) in paravertebral group			
Table 3	Extent of spread of injected dye (cm) in intercostal group			
Table 4	The mean duration of sympathetic blockade (hours) in paravertebral subgroups			
Table 5	Mean pulse rate (beat/min) in groups under study			
Table 6	Mean Systolic Blood Pressure (mmHg) in groups under study			
Table 7	Mean Diastolic Blood Pressure (mmHg) in groups under study			
Table 8	Mean Expiratory Flow Rate (ml/min) in groups under study			
Table 9	Mean Visual Analogue Score (VAS) in groups A & B			
Table 10	Demographic and clinical characteristics of groups C & D			
Table 11	VAS score in the two studied groups along the 48 hours postoperative			
Table 12	Mean Peak expiratory flow rate (PEFR) (ml/min) in groups under study			
Table 13	Mean heart rate (beat/min) in the two studied groups			
Table 14	Mean systolic blood pressure (mmHg) during the 48 hours postoperatively in the two studied groups			
Table 15	Mean diastolic blood pressure (mmHg) during the 48 postoperatively hours in the two studied groups			
Table 16	Changes of plasma cortisol level (ng/dl) during the 24 hours postoperatively in the two studied groups			
Table 17	Mean blood glucose level (mg/dl) during the 24 hours postoperatively in the studied groups	110		

LIST OF ABBERIVIATIONS

1.	CT	Computerized Tomographry
2.	C. S. F	Cerebro Spinal Fluid
3.	CABG	Coronary artery by pass surgery
4.	ECG	Electrocardiogram
5.	EP	Epidural
6.	FRC	Functional Residual Capacity
7.	IC	Intercostal
8.	ICNBS	Intercostal nerve blocks
9.	ICU	Intensive Care Unit
10.	MRI	Magenitic Rensonance Imaging
11.	MST	muscle Sparing thoracotomy
12.	NCI	National Cancer Institute
13.	OLV	One Lung Ventilation
14.	PACU	Post anesthetic Care Unit
15.	PEFR	Peak expiratory flow Rate
16.	PFM	Peak Flow meter
17.	PV	Paravertebral
18.	RCT	Randomized Controlled trial
19.	TEA	Thoracic epidural analgesia
20.	TPVB	Thoracic Paravertebral block
21.	TPVS	Thoracic Paravertebral
22.	VAS	Visual analogue scale
23.	VATS	Video assisted thoracic surgery
24.	VC	Vital Capacity

ABSTRACT

ANATOMICAL, RADIOLOGICAL AND CLINICAL STUDY OF PARAVERTEBRAL ANALGESIA IN THORACIC SURGERY

Introduction: Post-thoracotomy pain has long been recognized as a cause of post-operative morbidity, resulting n inadequate ventilation, and coughing which in turn leads to a teleecstasis, mucous plugging, hypoxia and pulmonary infection. The aim of this work is to study the paravertebral space anatomically, radiographically and clinically. Methodology: They study was conducted in National cancer institute on 80 patients of both sexes and was divided into two stages, stage I done on 40 patients having chronic thoracic pain stage II done on 40 patients after thoracotomy. Stage I: the 40 patient was randomly allocated into 2 groups each group 20 patients. One group underwent paravertebral single injection and 2nd group underwent intercostal single injection. Stage II: conducted on 40 patients, they were randomly allocated in to two groups, Each group 20 patients. One group for thoracic epidural continuous catheter technique and the other group paravertebral catheter technique. Resultes: The study showed in stage of for radiographic imaging of the intercostals space, the dye was confined to the intercostals space without any vertical spread, where in paravertebral space spread of the dye was to 2-4 spaces with both epidural and contralateral spread. There was no sympathetic blockade in cases of intercostals block meanwhile paravertebral block in all cases was associated with sympathetic blockade that lasts for 16-17 hours. There was no difference, between intercostals and paravertebral groups in cases of systolic, diastolic blood pressure and heart rate. Concerning pulmonary function measured by (PEFR). It was moderately higher in paravertebral group. There was low VAS score in paravertebral than intercostals group. Stage II; the results of the study, showed that immediate analgesic effect in epidural group was significantly higher early after recovery but there was no difference afterwards throughout the period of study. The use of rescue morphine was more in the paravertebral group. There was no difference between the two groups in post-operative pulmonary functions. Epidural technique was associated with hypotension. There was no difference in heart rate between the two groups. There was no difference between the two groups in pre-and post-operative blood glucose and plasma cortisol. Pulmonary catheter complications were recorded in paravertebral but not in epidural technique.

Key word: (Thoracotomy- Paravertebral- intercostals- epidural- pain- PEFR)

key -words

Thoracotomy

Paravertebral

intercostal

epidural

pain

PEFR

ACKNOWLEDGEMENT

First and foremost, I feel always indebted to God, the most kind and most merciful. Words will never be able to express my deepest gratitude to all those who helped me during preparation of this study.

I am most grateful to Dr. Prof. Magdi Iskander, Professor of Anesthesiology, ICU and Pain relief Department, National Cancer Institute, Cairo University, who kindly supervised and motivated the performance of this work with keen interest and indispensable advice.

I am greatly honored to express my sincere appreciation to Dr. Prof. Samia Akle, Professor of Clinical pathology, National Cancer Institute, Cairo University, for her valuable scientific supervision and guidance.

Also I am greatly honored to express my sincere appreciation to Dr. Magda Shokry Assistant Professor of Anesthesiology, ICU and Pain relief Department, National Cancer Institute, Cairo University, for her valuable scientific supervision and guidance.

I owe a particular debt of gratitude to Dr. Aiman Ghoniem, Assistant Professor of Anesthesiology, ICU and Pain relief Department, National Cancer Institute, Cairo University, for his valuable help, direction and his encouragement in this study.

INTRODUCTION

Pulmonary complications have been described in 20-37% of patients undergoing thoracic surgery and may significantly contribute to perioperative mortality, length of stay after surgery and consequently hospital cost (*O'Chrock et al.*, 2002).

The pain following thoracotomy surgeries is particularly severe as the surgery involves muscle dividing incision of the chest wall, which moves during respiration. Normal and deep breathing results in stretching of the skin incision. This stretching during deep inspiration and active exhalation results in severe pain and results in reduced lung volume and capacities. Splinting leads to reduced active exhalation and failure to cough, resulting in retention of secretion, airway closure leading to atelectasis and pneumonia. Thus proper control of post thoracotomy pain in addition to providing comfort for the patient facilitates chest physiotherapy, effective expectoration and early ambulation (*Perkins & Kehlet*, 2000).

When choosing an approach to post-thoracotomy pain management, the thoracic surgeon and anesthesiologist must consider: the physician's experience, familiarity and personal complication rate with specific techniques, the desired extent of local and systemic pain control, the presence of contraindication to specific analgesic techniques and medications and availability of appropriate facilities for patient assessment and monitoring. Refinements in surgical technique including

limited or muscle-sparing thoracotomy, video-assisted thoracoscopic surgery and robotic surgery may lessen the magnitude of post-thoracotomy pain (*Savage et al.*, 2002).

There are different techniques appear to be efficacious in controlling post-thoracotomy pain and reducing the amount of systemic opioids consumed: continuous intercostal blockade, paravertebral blockade, and epidural opioids with or without local anesthetics. The combination of thoracic epidural opioid and local anesthetic is very effective in relieving post-thoracotomy pain, however considerable experience is required for insertion of the thoracic epidural catheter and post-operative respiratory monitoring. Intercostal and paravertebral catheters can be inserted intra-operatively under direct visualization, to reduce complications of insertion. One-time intra-operative intercostals blockade may effectively reduce post-operative pain in the first day, but is not practical long term method for post-thoracotomy pain. The effectiveness of intrapleural analgesia, even with proper technique, appears inferior to epidural and other regional techniques (*Pavies et al.*, 2006).

Thoracic paravertebral analgesia is used for surgical procedures of the thorax and upper abdomen. Its effectiveness has been shown to be equal or even superior to that of epidural analgesia. In experienced hands this block can be performed safely and effectively. Its failure rate of %10 comparable to that reported for epidural analgesia (*Richardson et al.*, 1999).

Paravertebral block is an effective alternative to epidural analgesia in the management of post-thoracotomy pain, however, they are no established guidelines regarding what is the most suitable strategy when varying drugs and dosages between different groups (*Fibla et al.*, 2008).

AIM OF THE WORK

This study will be done to evaluate paravertebral space anatomically, radiographically and clinically. It will evaluate, possible doses (concentrations and volumes) required to block the segments involved in the surgical field with minimal side effects. Also a continuous paravertebral block will be applied clinically for major thoracic surgery to ensure alleviation of pain and improve pulmonary function and maintain as much as possible the hemodynamic status.

PATIENTS AND METHODS

This prospective study was conducted from the period October 2006 to Marsh 2009 at National Cancer Institute (NCI), Cairo University after obtaining approval from the local Ethics Committee and informed patient consent. Eighty adult patients, ASA I – II, were included in this study.

We started a preliminary study on 40 patients to compare the efficacy of paravertebral blockade versus the classical intercostal blockade on chronic thoracic pain. Meanwhile a comparative study between paravertebral versus thoracic epidural blockade for postoperative analgesia was done on another 40 patients with bronchogenic carcinoma who underwent pneumonectomy operations.

The patients in the preliminary study were adults with age range between 20 and 50 years old, complaining of chronic thoracic pain involving the somatic thoracic region, receiving their treatment regularly from the pain clinic at the NCI and they must stop their medical treatment 24 hours before the procedure.

Exclusion criteria were:

- Lack of patient consent
- Sepsis systemic or local over thoracic vertebrae
- Empyema
- Coagulopathy

- Diabetes mellitus
- Allergy to amide local anesthetics
- Psychiatric disorders
- Inability to understand pain scoring or to use hand held peak flow meter.

Patients were randomly allocated into two equal groups of 20 patients using computer generated random numbers:

Group A-Pv:

Patients in this group received paravertebral blockade using nerve stimulator. With the patient in a sitting position and in standard sterile fashion, paravertebral blocks were placed with nerve stimulation guidance. An area of 2.5 cm to the right of the superior aspect of the spinous process of the entry site was anaesthetized with 1% lidocaine. A 100 mm 21-gauge insulated needle (Stimuplex; B Braun Medical, Inc., Bethlehem, PA) was then inserted at this point and advanced to the transverse process. The needle was "walked off" the transverse process cranially and advanced approximately 1.5 cm until a subtle loss of resistance was appreciated and a right abdominal wall twitch was elicited. The twitch disappeared at 0.3 mA. After negative aspiration, the prepared volume of anesthetic was injected incrementally.

Patients in this group were subgrouped randomly into two equal subgroups (10 patients each) to receive either 8 or 12 ml of the analgesic solution used: