Adiponectin in patients with Coronary Artery Disease

Thesis

Submitted in partial fulfillment of master degree in Clinical & Chemical pathology

By Mona Mohsen Abdul-Salam MB.B.Ch.

Supervisors

Prof. Dr. Ibtisam Mohamed Farid

Professor of Chemical & Clinical pathology Faculty of Medicine Cairo University

Prof. Dr. Ahmed El-Said El-Taweel

Prof. of Chemical & Clinical Pathology Faculty of Medicine Cairo University

Prof. Dr. Magdy Abdel-Hamid Abdel-Aziz

Prof. of Cardiology Faculty of Medicine Cairo University

Faculty of Medicine Cairo University

Acknowledgement

"First and Foremost, Thanks are due to God, The Beneficient and Merciful of ALL"

I would like to express my deepest gratitude and sincere thanks to Prof.Dr. Ibtisam Mohammed Farid, Professor of Chemical & Clinical pathology, Faculty of Medicine, Cairo University, for her instructive supervision, continuous guidance and valuable instructions throughout the work. I have learned a great deal and gained valuable experience. I really had the honour of having her supervise this work.

My sincere gratitude and appreciation to Prof.Dr. Ahmed El-Said El-Taweel, Prof. of Chemical & Clinical Pathology, Faculty of Medicine, Cairo University, for his valuable assistance, great help, and constant support.

My sincere gratitude and appreciation to Prof.Dr. Magdy Abdel-Hamid Abdel-Aziz, Prof. of Cardiology, Faculty of Medicine, Cairo University, for his valuable advice, great cooperation and continuous guidance.

I would like to thank Dr. Nehad Ahmed Mosaad, Ass. Prof. of Chemical & Clinical Pathology, Faculty of Medicine, Cairo University, for her valuable advice and assistance in statistical analysis of the results of this work.

I would also like to thank Dr. Manal Kamal, Lecturer of Chemical & Clinical Pathology, Faculty of Medicine, Cairo University, for her valuable advice, cooperation and assistance throughout the work.

I would like to thank Dr. Manal El Deep, Lecturer of Internal Medicine, Faculty of Medicine, Cairo University, for her valuable advice and assistance throughout the work.

Special thanks to all the staff and my collegues in the Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo university for their cooperation during this work.

I would like to thank my family for supporting me throughout this work and encouraging me to finish it in a suitable way.

Abstract

Coronary heart disease represent a major cause of death worldwide. Adiponectin is an important adipocytokine that shows a number of antiatherogenic and insulin sensitizing effects. Measurement of Adiponectin may be a helpful tool for assessment of the risk of CAD and may represent a novel diagnostic tool for risk stratification of patients with myocardial ischaemia. Adiponectin is an independent predictor of coronary artery disease.

Key words: (Adiponectin, Coronary artery disease)

Table of contents

Title	Page
List of abbreviations	i
List of tables	iv
List of figures	V
Introduction	1
Aim of work	٣
Review of literature	٤
Coronary artery disease	٤
Pathophysiology	٤
Risk factors	١٦
Presentations	7 1
Adiponectin	٤٢
Adiponectin and CHD	٤٩
Materials and methods	٥٩
Results	Y 1
Discussion.	9 £
Summary	١
Conclusion and Recommendations	١.٣
References	1.5
Arabic summary	•

List of Abbreviations

Abbreviation	Full Name
ACC	Acetyl coenzyme-A carboxylase
Acrp ^{\(\tau\)}	Adipocyte complement-related protein of ** kDa
ACS	Acute coronary syndrome
Adipo R\	Adiponectin receptor \
Adipo RY	Adiponectin receptor ^۲
AMI	Acute myocardial Infarction
AMPK	Adenosine monophosphate protein kinase
APM	Adipose most abundant gene transcript \
BMI	Body mass index
CAD	Coronary artery disease
cAd	Collegenous domain of adiponectin
cDNA	Complementary DNA
CHD	Coronary heart disease
CK	Creatine kinase
CK-MB	Creatine kinase muscle – brain fraction
CRP	C-reactive protein
cTnT	Cardiac Troponin T
cTnI	Cardiac Troponin I
ECG	Electrocardiogram
ELISA	Enzyme Linked Immunosorbent Assays
eNO	Endothelial nitric oxide
fAd	Full-length Adiponectin protein
FFA	Free fatty acids
FGF	Fibroblast growth factor
G ⁷ Pase	Glucose-٦- phosphatase
gAd	Globular domain of adiponectin
GBP۲A	Gelatin binding protein of YA kDa
GLUT ٤	Glucose transporter 5
HB EGF	Heparin-binding epidermal growth factor-like growth factor
HDL	High density lipoprotein
hFABP	Heart type Fatty Acid Binding Protein

HMW	High molecular weight
HRP	Horse raddish peroxidase
hsCRP	High sensitivity assay of CRP
ICAM-	Intracellular adhesion molecule-\
IDF	International Diabetes Federation
IDL	Intermediate density lipoprotein
IL	Interleukin
LDH	Lactate dehydrogenase
LDL	Low density lipoprotein
LMW,	Low molecular weight
LP(a)	Lipoprotein (a)
MAPK	Mitogen activated protein kinase
MHC	Major histocompatibility complex
MI	Myocardial infarction
MMW	Medium molecular weight
mRNA	Messenger RNA
NAD	Nicotineamide adenine dinucleotide
NADH	Reduced Nicotineamide adenine dinucleotide
NADPH	Reduced Nicotineamide adenine dinucleotide phosphate
NCEP	National Cholesterol Education Program
NO	Nitric oxide
NSTEMI	Non- ST Elevation Myocardial Infarction
O.D.	Optical density
oxLDL	Oxidized low-density lipoprotein
PAI-1	Plasminogen activator inhibitor-
PDGF-BB	Platelet-derived growth factor BB
PEPCK	Phosphoenolpyruvate carboxykinase
PPARα	Peroxisome proliferator activated receptor
RIA	Radioimmunometric Assay
ROS	Reactive oxygen species
SAP	Stable angina pectoris
SDS-PAGE	Sodium dodecyl sulfate poly acrylamide gel electrophoresis
STEMI	ST Elevation Myocardial Infarction
TG	Triglycerides
TGF-β	Transforming growth factor B
Th	T Helper \ cells
Th	T helper Y cells
	- F 55 - 5 5 5 5 5

TIMP-1	Tissue inhibitor of metalloproteinase-\
TMB	Trimethyl benzidine
TNF alpha	Tumour necrosis factor alpha
TnI	Troponin I
TnT	Troponin T
UAP	Unstable angina pectoris
UA/NSTEMI	Unstable angina versus Non- ST Elevation Myocardial Infarction
VCAM-1	Vascular-cell adhesion molecule
VLDL	Very low density lipoprotein
WAT	White adipose tissue
WHO	World Health Organization

List of Tables

Table		Page
Table \	Braunwald Clinical Classification of UA /NSTEMI	71
Table 7	Properties of biomarkers of myocardial necrosis	٣٦
Table ۳	Patient characteristics of controls and CAD patients	٧٣
Table ٤	Patient characteristics of patient subgroups and control group.	٧٤
Table °	Comparison of studied laboratory parameters in patients and	٧٥
	controls	
Table 7	Comparison of studied laboratory parameters in CAD patients	٧٦
	(SAP, UA/NSTEMI, STEMI) and control	
Table Y	Comparative sudy of patient characteristics, metabolic parameters	٧٩
	and investigations between CAD subsets (SAP, UA/NSTEMI &	
	STEMI) versus control group	
Table ^	Comparative sudy of patient characteristics, metabolic parameters	٨٠
	and investigations between UA/NSTEMI & STEMI versus SAP	
Table 9	Comparative sudy of patient characteristics, metabolic parameters	۸١
	and investigations between UANSTEMI versus STEMI	
Table 1.	Correlation between Adiponectin and studied lab parameters and	٨٤
	angiographic findings among the patients & control group.	
Table 11	Correlation between Adiponectin and Angiographic data of vessels	٨٥
	involved with atherosclerosis	
Table 17	Data of control group (group I)	9.
Table ۱۳	Data of SAP group (group II A)	91
Table 15	Data of ACS group	
	Table \\(\xi \) (A): Data of UA/NSTEMI group (group II B)	9 7
	Table \\(\xi \) (B): Data of STEMI group (group II C)	98

List of Figures

Figure		Page
Fig. \	Activating Effect of LDL Infiltration on Inflammation in the	٦
	Artery	
Fig. 7	Role of Macrophage in Inflammation of the Artery	٨
Fig. ٣	Effects of T-Cell Activation on Plaque Inflammation	١.
Fig. ٤	Atherosclerotic Lesion in a Human Artery	١٤
Fig. °	(A). Structure and domains of adiponectin	٤٥
	(B). Similarity of adiponectin and C\q	٤٥
Fig. 7	Multimer formation of adiponectin	٤٧
Fig. Y	Anti-atherogenic and insulin-sensitizing actions of adiponectin	٤٩
Fig. A	Suppression of the process of atherosclerosis (plaque) formation by adiponectin	٥٣
Fig. 9	Adiponectin can activate AMPK and PPARα in the liver and skeletal muscle	٥٧
Fig. V.	Standard Dilution	٦٧
Fig. 11.	Illustration of the principle of the test	٧.
Fig. 17	Histogram showing plasma concentrations of adiponectin in CAD patients subgroups	٧٧
Fig. ۱۳	Histogram showing plasma concentrations of adiponectin in diabetic versus non-diabetic patients with CAD	۸۳
Fig. 15	Correlation of plasma concentrations of adiponectin with fasting glucose	٨٥
Fig. 10 (A)	Correlation of plasma concentrations of adiponectin with	٨٦
(B)	total cholesterol Correlation of plasma concentrations of adiponectin with	٨٦
(D)	HDL cholesterol	, , ,
(C)	Correlation of plasma concentrations of adiponectin with	AY
	LDL cholesterol	
(D)	Correlation of plasma concentrations of adiponectin with triglycerides	۸٧

Fig. \7 (A)	Correlation of plasma concentrations of adiponectin with LDH	٨٨
(B)	Correlation of plasma concentrations of adiponectin with CK	٨٨
(C)	Correlation of plasma concentrations of adiponectin with	٨٩
	CK-MB	

Introduction and Aim of work

Coronary artery disease (CAD) is a major cause of death worldwide (Murray et al., \quad \quad \text{and Ohashi et al., \quad \quad \quad \text{...}}). It is expected that the rate of CAD will accelerate in the next decade, contributed to by:

- aging of the population
- alarming increases in the worldwide prevelance of obesity, type Y diabetes, and the metabolic syndrome
- increasing cardiovascular risk factors among younger generations (Bonow et al., Y., Y).

Atherosclerosis is considered as the main cause of CAD. The whole spectrum of coronary artery disease evolves through various events leading to the formation and progression of atherosclerotic plaque and finally its complications. It has been suggested that atherosclerosis is a multifactorial, multistep disease that involves chronic inflammation at every step, from initiation to progression, and that all the risk factors contribute to pathogenesis by aggravating the underlying inflammatory process (Mallika et al., Y··V).

Kershaw and Flier, Y... suggested that the adipose tissue may play an important role in mediating the chronic inflammatory process and, subsequently, cardiovascular disease risk. Increasing evidence supports that the adipose tissue may have an active endocrine function producing several hormones and substances known as adipocytokines (Yamauchi et al., Y...).

Adiponectin is an adipocytokine that is believed to have significant antiatherogenic and antiinflammatory properties (Wolk et al., '\'\'). It appears to be a clinically important protein in the process of atherosclerosis (Von Eynatten et al., '\'\'). Physiologic levels of adiponectin are necessary to maintain the normal, noninflammatory state of the vascular wall (Hotta et al. '\'\'; Ouchi et al. '\'\' and Ouedraogo et al., '\'\') through acting as an endogenous modulator of both macrophage to foam cell transformation and endothelial inflammatory response (Nakamura et al., '\'\').

Low adiponectin has been linked to the presence of CAD and has been shown to be a risk factor for cardiovascular events (Wolk et al., Y··V). Adiponectin serum levels can be considered as an interesting tool in the risk stratification of CAD, to identify at an early stage, subjects in whom preventive strategies should be more aggressive (Tarquini et al., Y··V).

Aim of work

The aim of this study is to investigate whether circulating concentrations of plasma adiponectin may constitute a significant coronary risk factor and the relation between plasma concentrations of adiponectin and various subgroups of CAD patients including SAP group (stable angina pectoris) and ACS group (acute coronary syndrome) [ACS includes UAP/NSTEMI group (unstable angina pectoris versus non- ST elevation myocardial infarction) & STEMI group (ST elevation myocardial infarction)].