Thermal Characterization and Analytical Studies to Evaluate the Purity of Some Cosmetics and Cosmeceutical Components

Thesis

Presented for the degree of Doctor of philosophy
In pharmaceutical Sciences
(Analytical Chemistry)

By

Amany Morsi Mohamed

B.Sc. Pharmacy, Cairo University, 1997 M. Anal. Sci. (2005)

Under the Supervision of

Associate Prof. Dr. Maha Farouk Abdel-Ghany

Associate Professor of pharmaceutical Analytical Chemistry-Faculty of Pharmacy Ain Shams University

Prof. Dr.

Zeinab Abdel -Aziz EL-Sherif

Professor of Analytical Chemistry
National Organization for Drug Control
and Research

Associate Prof. Dr. Lobna Abdel-Aziz Hussein

Associate Professor of pharmaceutical Analytical Chemistry-Faculty of Pharmacy Ain Shams University

> Faculty of Pharmacy Ain Shams University

> > 2013

Acknowledgement

I am deeply thankful to **ALLAH** by the grace of whom this work was achieved.

I would like to express deepest gratitude to my deceased **Prof. Dr .Mohamed Abdel Naby El Ries**, Professor of Analytical chemistry, National Organization for Drug Control and Research for his keen supervision and for providing me kindly with all facilities that helped me to accomplish this work.

I am deeply endowed with feeling of duty and obligation towards **Ass. Prof. Dr. Maha Farouk Abdel Ghany**, Associate Professor of Pharmaceutical Analytical

Chemistry, Faculty of Pharmacy, Ain Shams University for her extensive effort, time and energy invested constant advising and supervision.

I wish to express my deep respect and appreciation to **Prof .Dr. Zeinab Abdel Aziz El Sherif** Professor of Analytical Chemistry, National Organization for Drug Control and Research for her helpful guidance, continuous encouragement during the development of the work and fruitful supervision and continuous support throughout this work.

I am greatly indebted to **Ass. Prof. Dr. Lobna Abdel-Aziz Hussein** Associate Professor of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University for her valuable suggestion and remarkers and helpful comments through revising the thesis.

I want to express my gratefulness to **Dr. Diaa A. Ibrahim** Researcher (organic chemistry devision) in National Organization for Drug Control and Research for his valuable motivation and through the thermal characterization part of the thesis, especially the molecular orbital characterization.

I would like to thank my mother for standing by me in allover my life and especially for completing this thesis.

Words could never express my deep gratitude to my dear husband for standing by me. Certainly, I wish also to express to my great love to my daughters Rawan, Rana and Zeina.

Finally, great thanks to all my colleagues, technicians, employees and member in Cosmetic Department National Organization for Drug Control and Research, for their help and support.

CONTENTS

Part I: General Introduction

	Page
I.1.Cosmetic Product	1
I.2. Cosmeceutical Product	1
I.3. FDA Classification of Cosmetics	3
I.3.1. Skin cleansing liquids	3
I.3.2. Hair cleansing	4
Part II: Literature Review	
II.1. Investigated Compounds	5
II.1.1. Ketoconazole	5
II.1.2. Chloroxylenol	7
II.1.3. Triclosan	8
II.2. Methods of Analysis of the Investigated Drugs	9
II.2.1. Methods of analysis of Ketoconazole	9
II.2.1.1.Titrirmetric method	9
II.2.1.2. Spectrophotometric methods	9
II.2.1.3. Spectrofluorometric methods	10
II. 2.1.4. Capillary zone electrophoresis	10
II. 2.1.5. Electrochemical methods	10
II.2.1.6. Chromatographic methods	11
II.2.1.6.1.Thin layer chromatographic methods	11
II.2.1.6.2. High performance liquid chromatographic methods	12
II.2.1.7. Thermoanalytical method	15

II.2.2. Method of analysis of Chloroxylenol	16
II.2.2.1. Titrimetric method	16
II.2.2.2. Chromatographic methods	16
II.2.2.2.1. High performance liquid chromatographic	
methods	16
II.2.2.2.2. Gas chromatographic methods	17
II.2.3. Method of analysis of Triclosan	17
II.2.3.1. Spectroscopic methods	17
II.2.3.2. Electrochemical methods	17
II.2.3.3. Chromatographic methods	18
II.2.3.3.1. Thin layer chromatographic methods	18
II.2.3.3.2. High performance liquid chromatographic methods	18
II.2.3.3.3. Liquid chromatography mass-mass spectrometry	19
II.2.3.3.4. Gas chromatographic methods	19
II.2.3.4. Capillary electrophoresis	20
PART III:	
Characterization of	
Ketoconazole, Chloroxylenol and Triclosan	
III.1. Introduction	21
III.1.1. Characterization of compounds	21
III.1.1. Thermal analysis	21
III.1.1.1. Differential scanning calorimetry	22
III.1.1.2. Thermogravimetry	23
III.1.1.3. Differential thermal analysis	23

III.1.1.2. Kinetic analysis	24
III.1.1.3. Molecular orbital calculation	24
III.1.1.4. Mass spectrometry	25
III.2. Experimental	25
III.2.1. Samples	25
III.2.1.1. Authentic samples	25
III.2.1.2. Market samples	25
III.2.2. Apparatus	26
III.2.3. Procedure	26
III.2.3.1. Differential scanning calorimetric analysis	26
III.2.3.2. Thermogravimetric analysis and Differential thermal analysis (TGA, DTA)	27
III.2.3.3.Kinetic of thermal decomposition of Ketoconazole, Chloroxylenol and Triclosan	27
III.2.3.4. Molecular orbital calculation	27
III.2.3.5. Mass spectrometry	28
III.3. Result and Discussion	29
III.3.1. Thermal evaluation of purity of Ketoconazole ,Chloroxylenol and Triclosan by differential scanning calorimetry	29
III.3.2. Thermal characterization of the investigated drugs by TG,DTG and DTA	34
III.3.2.1. Thermal characterization of Ketoconazole	34
III.3.2.2. Thermal characterization of Chloroxylenol	34
III.3.2.3. Thermal characterization of Triclosan	35
III.3.3. Kinetic studies of thermal decomposition of the investigated drugs	40

III.3.4. Molecular orbital calculation of Ketoconazol, Chloroxylenol and Triclosan	45
III.3.5. Mass spectrometry of Ketoconazole, chloroxylenol and Triclosan	54
III.3.6. Correlation between the mass spectral (MS) fragmentation and molecular orbital calculation (MOC) for Ketoconazole, Chloroxylenol and Triclosan	56
III.3.7. Correlation between the thermal analysis degradation and molecular orbital calculation for Ketoconazole.	59
III.4.Conclusion	60
PART IV	
Electrochemical Determination of Ketoconazole,	
Chloroxylenol and Triclosan at Glassy Carbon Electro	ode
IV.1. Introduction	64
IV.1.1. Voltammetric analysis	64
IV.1.1.1 Cyclic voltammetry	66
IV.1.1.2. Differential pulse voltammetry	67
IV.1.2. Application of electrochemical methods in pharmaceutical analysis	68
Section A	
Determination of Ketoconazole by Cyclodextrin	
Modified Glassy Carbon Electrode (CDMGCE)	
IV.A.1. Experimental	69
IV.A.1.1. Samples	69
IV.A.1.1. Authenteic sample	69

IV.A.1.1.2. Market Sample	69
IV.A.1.2. Chemicals and Reagents	69
IV.A.1.3. Buffer solutions	70
IV.A.1.4. Apparatus	70
IV.A.1.5. Standard solution	71
IV.A.1.5.1. Stock solution of Ketoconazole	71
IV.A.1.6. Preparation of glassy carbon working electrodes	71
IV.A.1.6.1. Preparation of modified glassy carbon electrodes (CDMGCE)	71
IV.A.1.7. Study of optimum conditions	72
IV.A.1.7.1. Effect of pH	72
IV.A.1.7.2. Effect of scan rate	72
IV.A.1.7.3. Effect of the concentration of β - CD	73
IV.A.1.8. Procedure	73
IV.A.1.8.1. Voltammetric measurements	73
IV.A.1.8.2. Method validation	73
IV.A.1.8.2.1. Linearity	73
IV.A.1.8.2.2. Accuracy	74
IV.A.1.8.2.3. Precision	74
IV.A.1.8.2.3.1. Repeatability	74
IV.A.1.8.2.3.2. Intermediate precision	74
IV.A.1.8.2.4. Limit of detection (LOD) and quantification (LOQ)	74
IV.A.1.8.3. Application of the proposed methods to the analysis of cosmeceutical preparation	75
IV.A.2. Results and Discussion	76
IV.A.3.Conclusion	80

Section B

Electrochemical Determination of Chloroxylenol and Tr	iclosan
at Glassy Carbon Electrode	

IV.B.1. Experimental	95
IV.B.1.1. Samples	95
IV.B.1.1. Authenteic samples	95
IV.B.1.1.2. Market samples	95
IV.B.1.2. Chemicals and Reagents	95
IV.B.1.3. Buffer solutions	96
IV.B.1.4. Apparatus	96
IV.B.1.5. Standard solutions	96
IV.B.1.5.1. Stock solution of Chloroxylenol	96
IV.B.1.5.2. Stock solution of Triclosan	96
IV.B.1.6. Preparation of glassy carbon working electrodes	96
IV.B.1.7. Study of optimum conditions	97
IV.B.1.7.1. Effect of pH	97
IV.B.1.7.2. Effect of scan rate	97
IV.B.1.8. Procedure	97
IV.B.1.8.1.Voltammetric measurement	97
IV.B.1.8.2. Method validation	98
IV.B.1.8.2.1. Linearity	98
IV.B.1.8.2.2. Accuracy	99
IV.B.1.8.2.3. Precision	99
IV.B.1.8.2.3.1. Repeatability	99

TID 10000 I	99
IV.B.1.8.2.3.2. Intermediate precision	99
IV.B.1.8.2.4. Limit of detection (LOD) and quantification (LOQ)	99
IV.B.1.8.3. Application of the proposed methods to the	
analysis of cosmeceutical preparation	100
IV.B.2. Results and Discussion	101
IV.B.3. Conclusion	104
PART V	
Chromatographic Determination of Ketoconazolo	e,
Chloroxylenol and Triclosan	
Section A	
Stability Indicating High Performance Thin Laye	
Chromatographic Densitometric Method for the Determ	
of Ketoconazole in the Presence of its Acid Degrad	
V.A.1. Introduction	124
V.A.2. Experimental	124
V.A.2.1. Samples	124
V.A.2.1.1. Authentic sample	124
V.A.2.1.2. Market sample	124
V.A.2.2. Chemical and Reagents	124
V.A.2.3. Apparatus	125
V.A.2.4. Standard solution	125
V.A.2.4.1. Stock solution of Ketoconazole	125
V.A.2.5. Procedure	125

V.A.2.5.1. Preparation of degradation product	125	
V.A.2.5.2. Chromatographic conditions	126	
V.A.2.5.3. Method validation	127	
V.A.2.5.3.1. Linearity	127	
V.A.2.5.3.2. Accuracy	127	
V.A.2.5.3.3. Precision	127	
V.A.2.5.3.3.1. Repeatability	127	
V.A.2.5.3.3.2. Intermediate Precision	127	
V.A.2.5.3.4. Robustness	128	
V.A.2.5.4. Determination of Ketoconazole in laboratory prepared mixture in presence of its degradate	128	
V.A.2.5.5. Application of the proposed methods for the determination of ketoconazole in pharmaceutical preparation	128	
V.A.3. Results and Discussion	129	
V.A.4.Conclusion	132	
Section B Simultaneous Determination of Chloroxylenol and Triclosan by		
High Performance Liquid Chromatography	141	
V.B.1. Introduction	141	
V.B.2. Experimental	142	
V.B.2.1. Samples	142	
V.B.2.1.1. Authentic samples	142	
V.B.2.1.2. Market sample	142	

V.B.2.2. Chemicals and Reagents	142
V.B.2.3. Apparatus	142
V.B.2.4. Standard solutions	143
V.B.2.4.1. Stock solution of Chloroxylenol	143
V.B.2.4.2. Stock solution of Triclosan	143
V.B.2.4.3. Stock solution of mixture of Chloroxylenol and Triclosan	143
V.B.2.5. Procedure	143
V.B.2.5.1. Chromatographic conditions	143
V.B.2.5.2. Method validation	144
V.B.2.5.2.1. Linearity	144
V.B.2.5.2.2. Accuracy	144
V.B.2.5.2.3. Precision	144
V.B.2.5.2.3.1. Repeatability	144
V.B.2.5.2.3.2. Intermediate precision	144
V.B.2.5.2.4. Robustness	145
V.B.2.5.3. Analysis of laboratory prepared mixture of Chloroxylenol and Triclosan	145
V.B.2.5.4. Application to cosmeceutical preparation	145
V.B.3. Results and Discussion	146
V.B.4.Conclusion	149
PART VI	
References	
VI. References	159
Arabic summary	

LIST OF FIGURES

Figure		Page
1.	DSC profile of Ketoconazole	31
2.	DSC profile of Ketoconazole tablet (Nizoral tablets)	31
3.	DSC profile of Chloroxylenol	32
4.	DSC profile of Triclosan	32
5.	TGA, DTG curves of Ketoconazole	36
6.	DTA curve of Ketoconazole	36
7.	TGA, DTG curves of Chloroxylenol	37
8.	DTA curve of Chloroxylenol	37
9.	TGA, DTG curves of Triclosan	38
10.	DTA curve of Triclosan	38
11.	Kinetic plot of Ketoconazole using mathematical method of Horowitz & Metzeger	42
12.	Kinetic plot of Ketoconazole using mathematical method of Coats& Redfern	43
13.	Numbring system of Ketoconazole	46
14.	Numbring system of Chloroxylenol	47
15.	Numbring system of Triclosan	47
16.	The mass spetrum of Ketoconazole	54
17.	The mass spectrum of Chloroxylenol	55
18.	The mass spectrum of Triclosan	55
19.	Differntial pulse voltammogram of blank run() and Ketoconazole using CDMGCE (—) with 4x10 ⁻⁵ moll ⁻¹ concentration in B-R buffer (9.0), pulse	0.1
	amplitude 50mV, scan rate 100mV/S	81