

Ain Shams University Faculty of Science

Effects of Human Umbilical Cord Blood Mesenchymal Stem Cells on Expression of Leukaemic Inhibitory Factor and Interleukin-10 in Acute Myeloid Leukaemia

A Thesis

Submitted for the Degree of Master of Science as a Partial Fulfillment for Requirements of the Master of Science

Presented by Luca Latif Nazmi

Supervised by Prof. Dr. Monir A. El-Ganzuri

Prof. of Cell Biology Faculty of Science Ain Shams University

Prof. Dr. Olfat Gamil Shaker

Prof. of Medical Biochemistry & Molecular Biology Faculty of Medicine Cairo University

Prof. Dr. Neemat Mohammed Kassem

Consultant of Clinical Pathology Faculty of Medicine Cairo University

Address: Abbassia – Cairo – Egypt Tel: (202) 2685 7769

Fax: (202) 6842 123 Postal Code: 11566

Site: http//Sci.Shams.edu.eg

Acknowledgement

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Dr. Monir A. El-Ganzuri for the continuous support of my study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis.

Besides my supervisor, I would like to thank the rest of my thesis committee: Prof. Dr. Olfat G. Shaker, Prof. Dr. Neemat M. Kassem, for their encouragement, insightful comments, and hard questions.

Last but not the least, I would like to thank my family specially my dear mother Magda Nazir and my father Latif Nazmi for providing me with unfailing support and continuous encouragement throughout the years of my study, and through the process of writing this thesis. This accomplishment would not have been possible without them.

List of Content

Acknowledgement	I
List of Abbreviations	III
List of Tables	V
List of Figures	VI
1. Introduction and Aim of the Work	1
2. Previous Work	4 - 48
2.1 Acute Myeloid Leukaemia	4
2.2 Mesenchymal Stem Cells	21
2.3 Leukaemia Inhibitory Factor	38
2.4 Interleukin-10	44
3. Material and Methods	49
4. Results	69
5. Discussion	85
6. Summary	98
7. References	101
8 Arabic Summary	٤

List of Abbreviations

ALL	Acute lymphoblastic leukaemia
AML	Acute myeloid leukaemia
ATLS	Acute tumour lysis syndrome
BM	Bone marrow
C-FU	Colony-forming unit
CLL	Chronic lymphocytic leukaemia
CML	Chronic myeloid leukaemia
CNS	Central nervous system
CNTF	Ciliary neurotrophic factor
COAP	Cyclophosphamide, Oncovin,
	Arabinofuranosylcytidine, Prednisone
DEPC	Diethyl pyrocarbonate
DIA	Differentiation inhibitory factor
DIF	Differentiation-inducing factor
DMEM	Dulbecco's Modified Eagle Medium
dNTp	Deoxyribosenucleoside triphosphate
DRF	Differentiation-retarding factor
EC	Embryonic carcinoma
ECCs	Embryonic carcinoma cells
EDTA	Ethylenediaminetetraacetic acid
EG	Embryonic germ
EGCs	Embryonic germ cells
ELISA	Enzyme-linked immunosorbent assay
ESCs	Embryonic stem cells
FBS	Foetal bovine serum
FITC	Fluorescein isothiocyanate
HESCs	Human embryonic stem cells
HILDA	Human interleukin for DA cells
HRP	Horseradish peroxidase
HSCs	Haematopoietic stem cells
HSCT	Haematopoietic stem cell transplantation
HSF3	Hepato-stimulating factor 3
ICM	Inner cell mass
IgG	Immunoglobulin G
IL-10	Interleukin-10

IL-6	Interleukin-6
IPSCs	Induced pluripotent stem cells
LIF	Leukaemia inhibitory factor gene
LIFR	Leukaemia inhibitory factor receptor
LSC	Leukaemia stem cell
MDS	Myeloydysplastic syndrome
mGS	Multipotent germ stem
MLPLI	Melanoma-derived lipoprotein lipase inhibitor
M-MLV RT	Moloney murine leukaemia virus reverse
	transcriptase
MNCs	Mononuclear cells
MPD	Myeloproliferative disease
MRD	Minimal residual disease
MS-5	Murine stroma-5
MSCs	Mesenchymal stem cells
non-ESCs	Non-embryonic stem cells
NPM	Nucleophosmin gene
O. D.	Optical density
OAF	Osteoclast-activating factor
OSM	Oncostatin-M
PBS	Phosphate buffer saline
PE	Phycoerythrin
PGE ₂	prostaglandin E ₂
qPCR	Quantitative polymerase chain reaction
SCNT	Somatic cell nuclear transfer
SCT	Stem cells transplantation
SD	Standard deviation
SSCs	Spermatogonia stem cells
t-AML	Therapy-related acute myeloid leukaemia
TdT	Terminal deoxynucleotidyl transferase
TMB	Tetramethylbezidine
UCB	Umbilical cord blood
VCAM-1	Vascular cell adhesion molecule-1
WHO	World Health Organization

List of Tables

Number	Subject	Page
Table (1)	Conceptual classification of haematologic neoplasms	8
Table (2)	Interleukin-10 (IL-10) kit contents	56
Table (3)	cDNA master mix preparation	65
, ,	The oligonucleotide primers sequences of the	
Table (4)	studied gene (leukaemia inhibitory factor)	65
Table (5)	IL-10 concentration in the four studied groups	79
	The oligonucleotide primers sequences of the	
Table (6)	studied gene (leukaemia inhibitory factor,	80
	LIF) and the control gene $(\beta$ -actin)	
T.1.1. (7)	Relative expression of <i>LIF</i> gene in the four	92
Table (7)	studied groups	82
	The mean and standard deviation of relative	
	expression of the gene "leukaemia inhibitory	
Table (8)	factor" (LIF) and concentration of	83
	"interleukin-10" (IL-10) in the control group	
	(group1)	
	The mean and standard deviation of relative	
	expression of the gene "leukaemia inhibitory	
Table (9)	factor" (LIF) and concentration of	83
	"interleukin-10" (IL-10) in the acute myeloid	
	leukaemia group (group 2)	
	The mean and standard deviation of relative	
	expression of the gene "leukaemia inhibitory	
Table (10)	factor" (LIF) and concentration of	84
	"interleukin-10" (IL-10) in mesenchymal	
	stem cells (MSCs) group (group 3)	
	The mean and standard deviation of relative	
	expression of the gene "leukaemia inhibitory	
	factor" (LIF) and concentration of	
Table (11)	"interleukin-10" (IL-10) in acute myeloid	84
	leukemia (AML) co-cultured with	
	mesenchymal stem cells (MSCs) group	
	(group 4)	

List of Figures

Number	Subject	Page
Figure (1)	The relative frequency of the	
	haematological malignancies as a	5
	proportion of malignant disease.	
Eigung (2)	Development of three cell lineages from	11
Figure (2)	pluripotential stem cells.	11
Figure (2)	Fertilization of the egg by a sperm leads	22
Figure (3)	to the formation of blastocyst.	22
	Schematic representation of the loss of	
Figure (4)	potency as development and cell	25
	differentiation occur	
Figure (5)	ELISA kit showing the principle of IL-10	55
Figure (5)	measurement.	33
Figure (6)	Reagents and samples preparation.	58
Figure (7)	Human IL-10 standard curve.	61
	(A): Separation of the MSCs (buffy coat)	70
	using density gradient centrifugation	
Figure (8)	technique at 1800 xg for 30 minutes.	
	(B): MSCs precipitation using density	
	gradient.	
Figure (0)	Primary culture of MSCs on day 7.	71
Figure (9)	Optical lens X200	/1
Eigung (10)	Primary culture of MSCs on day 7.	71
Figure (10)	Optical lens X100	71
Figure (11)	Primary culture of MSCs on day 12	72
Figure (12)	First-passage culture on day 5	72
	(A): Flow cytometric characterization	73
	analyses of human umbilical cord-	
	derived MSCs. Ungated histogram.	
Figure (13)	Negative CD34 and CD45	
	(B): Flow cytometric characterization	
	analyses of human umbilical cord-	
	derived MSCs. Gated histogram.	
	Negative CD34 and CD45	

Figure (14)	(A): Flow cytometric characterization analyses of human umbilical cordderived MSCs. Ungated histogram. Positive CD90 and CD105 (B): Flow cytometric characterization analyses of human umbilical cordderived MSCs. Gated histogram. Positive CD90 and CD105	73
Figure (15)	Primary culture of leukaemic blast stem cells on day 1	74
Figure (16)	Primary culture of leukaemic blast stem cells on day 3	74
Figure (17)	Primary culture of leukaemic blast stem cells on day 7	75
Figure (18)	Primary culture of leukaemic blast stem cells on day 7. Optical lens 20X	75
Figure (19)	 (A): Flow cytometric characterization analyses of human acute myeloid leukaemia. Ungated histogram. Positive CD13 and CD33. (B): Flow cytometric characterization analyses of human acute myeloid leukaemia. Gated histogram. Positive CD13 and CD33. 	76
Figure (20)	 (A): Flow cytometric characterization analyses of human acute myeloid leukaemia. Ungated histogram. Negative CD34 and CD41. (B): Flow cytometric characterization analyses of human acute myeloid leukaemia. Gated histogram. Negative CD34 and CD41. 	76
Figure (21)	(A): Co-culture of mesenchymal stem cells (MSCs) with acute myeloid leukaemia cells (AML) on day 5. (B): Co-culture of mesenchymal stem cells (MSCs) with acute myeloid leukaemia cells (AML) on day 8.	77

Figure (22)	Co-culture of mesenchymal stem cells (MSCs) with acute myeloid leukaemia cells (AML) on day 1.	77
Figure (23)	Co-culture of mesenchymal stem cells (MSCs) with acute myeloid leukaemia cells (AML) on day 3.	77
Figure (24)	Concentration of IL-10 in the culture media of the four studied groups.	79
Figure (25)	Amplification plot of <i>LIF</i> expression in AML patients.	81
Figure (26)	Amplification plot of β -actin expression in AML patients	81
Figure (27)	LIF gene relative expression in the four studied groups.	82

1. Introduction and Aim of the Work

1. Introduction and Aim of the Work

Acute myeloid leukaemia (AML) is the most frequent haematological malignancy in adults, with an estimated worldwide annual incidence of three to four cases per 100,000 people. Despite intensive research for new therapies and prognostic markers, it is still a disease with a highly variable prognosis among patients and a high mortality rate. Indeed, less than 50% of adult AML patients have a 5-year overall survival rate, and in the elderly, only 20% of AML patients survive for 2 years (Gregory T. K. et al., 2009). Haematological malignancies represent approximately 7% of all malignant diseases (Victor Hoffbrand A. and Paul Moss A. H., 2011).

The stem cells are undeveloped cells capable of proliferation, self renewal, conversion to differentiated cells and regenerating tissues. There are two main types of stem cells: embryonic and non-embryonic. The embryonic stem cells (ESCs) are pluripotent because they can differentiate into all cell types. Non-embryonic stem cells (non-ESCs) are multipotent because their potential to differentiate into cell types is comparatively limited. The embryonic stem cells are more prevalent than the non-ESC and have a greater potential to spontaneously differentiate than the non-ESCs (Bernard E. T., 2006).

Introduction and Aim of the Work

Leukaemia inhibitory factor protein (LIF) is a pluripotent cytokine with pleiotropic activities. The protein LIF is a member of a family of cytokines called "neuropoietic cytokines" that includes the ciliary neurotrophic factor (CNTF), interleukin-6 (IL-6), IL-11, oncostatin-M (OSM), and cardiotropin-1 (Hall A. K. and Rao M. S., 1992; Sylvian B. *et al.*, 2007). The *LIF* gene was first cloned in 1987, and is characterized by its ability to stimulate the differentiation of the murine myeloblastic leukaemia cell line "M1" (Gearing D. P. *et al.*, 1987).

Interleukin-10 (IL-10) is a polypeptide produced by the Th2 subset of T helper lymphocytes, B lymphocytes, macrophages, and monocytes in response to an immunological challenge (**De Waal Malefyt R.** *et al.*, **1991**). The Il-10 is an efficient inhibitor of tumour metastases *in vivo* at doses that do not have a direct effect on normal cells (**Zheng L. M.** *et al.*, **1996**).

The hypothesis that the mesenchymal stem cells (MSCs) have unique immunomodulatory properties attracted much interest as they may be harnessed for novel therapeutic approaches in immune-mediated diseases. So, these stem cells may be potential candidates for immunotherapeutic approaches in acute myeloid leukaemia (AML) patients.

The MSCs seem to have a relevant role in AML as they prevent spontaneous and induced apoptosis and may attenuate

Introduction and Aim of the Work

chemotherapy-induced cell death. This possibility has been confirmed by the finding that co-cultivation of a leukaemic cell line with the murine stroma cell line "MS-5" can block apoptosis (**Konopleva M.** *et al.*, **2002**).

Aim of the Work

The aim of the present work is to detect the effect of the human MSCs on the expression of *LIF* gene, and the cytokine IL-10 level in human AML. The MSCs were separated from human umbilical cord blood (HUCB), and co-cultured with samples collected from peripheral blood (PB) of AML-insulted adults prior to chemotherapy. Cells identification was done using flow cytometric analyses.

The expression of *LIF* gene and the cytokine IL-10 level were measured using the real-time polymerase chain reaction (q-PCR) and enzyme-linked immunosorbent assay (ELISA) techniques, respectively before and after the co-culture in order to evaluate the immunomodulatory and anti-inflammatory effects of the human MSCs on the human AML.

2. Previous Work

2.1 LEUKAEMIA

Previous work

Cancer is an increasingly-important cause of morbidity and mortality. The majority of cancers are epithelial malignancies. Haematological malignancies represent approximately 7% of all malignant diseases (**Figure 1**). There are major geographical variations in occurrence of such diseases; for example, chronic lymphocytic leukaemia (CLL) is the most common leukaemia in the West, but rare in the Far East (Victor Hoffbrand A. and Paul Moss A. H., 2011).

Biomedical research has focused on the study of cancer with notable success. A rather simplistic view of how cancer arises (cancer pathogenesis) can be based on the consideration of a normal cell's fate. All cells in the body appear to have three possible fates: they may proliferate to produce more cells, differentiate to carry out specialized functions, or die at a predetermined time (by a process termed "apoptosis" or "cell suicide"), and then be eliminated.

The body requires an appropriate balance of the cells undergoing each of these fates for normal function and survival. The normal cells usually die after 40 to 60 cycles of replication. In contrast, cancer arises when proliferation consistently and aberrantly exceeds apoptosis in a single (clonal) population of cells (**Tariq M. I.** *et al.*, **2013**).