STUDIES ON THE CONTROL OF SOME PLANT VIRUSES USING BIOTECHNOLOGY

BY

ALI MOHAMED ALI EL-BOROLLOSY

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 1995M.Sc. Agric. Sc. (Agric. Virology), Ain Shams University, 2000

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Agricultural Virology)

Department of Agric. Microbiology Faculty of Agriculture Ain Shams University

2005

STUDIES ON THE CONTROL OF SOME PLANT VIRUSES USING BIOTECHNOLOGY

\mathbf{BY}

ALI MOHAMED ALI EL-BOROLLOSY

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 1995 M.Sc. Agric. Sc. (Agric. Virology), Ain Shams University, 2000

Under the supervision of:

Prof. Dr. Sohair Ibrahim El-Afifi

Prof. of Agric. Virology, Dept. of Agric. Microbiology, Fac. of Agric., Ain Shams Univ. (principal supervisor)

Prof. Dr. Atef Shoukry Sadik

Prof. of Agric. Virology, Dept. of Agric. Microbiology, Fac. of Agric., Ain Shams Univ.

Prof. Dr. Mamdouh Hussain Abdel-Ghaffar Prof. of Agric. Virology, Dept. of Agric. Microbiology, Fac. of Agric., Ain Shams Univ.

Approval Sheet

STUDIES ON THE CONTROL OF SOME PLANT VIRUSES USING BIOTECHNOLOGY

BY

ALI MOHAMED ALI EL-BOROLLOSY

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 1995 M.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2000

This thesis for Ph.D. degree has been approved by:

Prof. Dr. Hani Mohamed El-Sa Prof. Emeritus of Plant Zagazig Univ.	id
Prof. Dr. Badawi Abdel Salam	
Prof. of Agric. Virology, Fa	ic. of Agric., Ain Shams Univ.
Prof. Dr. Atef Shoukry Sadik	•••••
Prof. of Agric. Virology, Fa	ac. of Agric., Ain Shams Univ.
Prof. Dr. Sohair Ibrahim El-Afi	ifi
Prof. of Agric. Virology, Fa	nc. of Agric., Ain Shams Univ.

Date of examination: / /2005.

ACKNOWLEDGMENT

First and foremost, praise and thanks to ALLAH, the most beneficent and merciful for assisting and directing me to the right way.

Thanks are due to **Prof. Dr. Sohair I. El-Afifi**, Prof. of Agric. Virology and Head of Agric. Microbiology Dept., Fac. of Agric., Ain Shams Univ. for suggesting the problem of investigation, continuous supervision, valuable guidance and constructive criticism through the whole course of work.

Special thanks and gratitude to **Prof. Dr. Atef S. Sadik**, Prof. of Agric. Virology, Agric. Microbiology Dept., Fac. of Agric., Ain Shams Univ. for his supervision, valuable cooperation and encouragement during the investigation.

My sincere appreciation to **Prof. Dr. Mamdouh H. Abdel-Ghaffar**, Prof. of Agric. Virology, Agric. Microbiology Dept., Fac. of Agric., Ain Shams Univ. for his helpful supervision, constructive criticism and valuable advice throughout the study.

Thanks to **Mr. Hisham A. Mohamadin**, Plant Pathology Research Institute, Agricultural Research Centre (ARC), Giza, Egypt for his help in viral genome sequencing by contacting the Molecular Virology Group Biotechnology, Group-Dept. of Plant Biology, The Royal Veterinary and Agric. Univ., Copenhagen, Denmark.

Grateful appreciation to all my colleagues and stuff members in the Plant Protection Research Institute, ARC, Dokki, Giza, Egypt for their help and providing materials.

Thanks are also extended to **Mr. Sheriff Idriss**, lecturer assistant of genetics, Genetics Dept., Fac. of Agric., Ain Shams Univ. for his helpful guidance and providing facilities.

Thanks to all my colleagues and staff members of Dept. of Agric. Microbiology, for their help and encouragement.

ABSTRACT

Ali Mohamed Ali El-Borollosy, Studies on the control of some plant viruses using biotechnology. Unpublished Ph.D. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2005.

The main target of the present study is to control tomato mosaic tobamovirus (ToMV) and potato Y potyvirus (common strain) PVYO depending on biotechnological methods. Confirmation of virus isolates was carried out by testing differential hosts susceptibility, symptomatology, detecting inclusion bodies by light microscopic examination and serologically by indirect ELISA. Viruses were purified using differential ultra centrifugation and purified preparations were evaluated by infectivity assay, indirect ELISA, UV absorption and electron microscopy. Purified preparations were used for antisera production by rabbit immunization, and immunoglobulins G (IgGs) were purified from the crude antisera. Viral coat proteins molecular weights were determined using the SDS-PAGE. Purified IgGs preparations were evaluated by detecting the viruses under study in infected tobacco sap using double diffusion test in agar, tissue and dot blot immunoassays. Sequencing of ToMV was carried out using Sanger's method and the nucleotide sequence was compared with five overseas isolates. PVY^O-free potato plantlets were produced by meristem tip culture, also a combination between meristem tip culture and ribavirin chemotherapy was performed and finally virus-free plantlets were used to produce microtubers. PVY^O under study was used to protect tobacco plants cv. White Burley from the necrotic symptoms caused by PVY necrotic strain (PVY^N). Coat protein genes (cp) for both viruses were isolated and amplified using immunocapture-reverse transcriptase-polymerase chain reaction (IC-RT-PCR) using primers with add-on restriction sites for *SmaI* and *SacI* enzymes.

The genes were cloned in pBI121 vector plasmid between the CaMV 35S promoter and the *nos* terminator after removing the *gus* gene by restriction enzymes (*Sma*I & *Sac*I) digestion. The new constructs were used for *Agrobacterium tumefaciens* (strain EHA101) transformation which was then used for tobacco transformation. Plants transformation success was confirmed using indirect ELISA, PCR, and RT-PCR. Plants resistance was tested by challenging with the viruses under study, remarkable success was obtained as 20% and 36% of transformed tobacco plants blocked viral infection for ToMV and PVY^O, respectively.

Key Words: ToMV, PVY^O, Sequencing, Genome, Coat protein gene (*cp*), Meristem tip culture, Cross protecttion, Transformation, pBI121, *Agrobacterium tumefaciens*, IC-RT-PCR.

CONTENTS

	Page
I-INTRODUCTION	1
II-REVIEW OF LITERATURE	4
III-MATERIALS AND METHODS	17
IV-RESULTS AND DISCUSSION	44
4.1. Confirmation of ToMV and PVY ^O isolates	44
4.1.1. Differential hosts and symptomatology	43
4.1.2. Inclusion bodies	48
4.1.3. Serological confirmation	48
4.2. Virus purification	51
4.2.1. Evaluation of purified preparations	51
4.2.1.1. Determination of dilution end point us-	
ing infectivity assay and indirect ELISA	51
4.2.1.2. UV absorption	51
4.2.1.3. Electron microscopy	54
4.3. Antisera production	54
4.3.1. Evaluation of purified IgGs	54
4.3.1.1. Double diffusion test in agar	54
4.3.1.2. Tissue blot immunoassay	54
4.3.1.3. Dot blot immunobinding assay	59
4.4. Determination of viral coat protein molecular	
weight	59
4.5. Sequences of ToMV genome and computer an-	
	59
alysis	75
4.6.1. Production of PVY ^O -free potato microt-	
ubers	75
4.6.2. Cross protection	78
4.6.3. Coat protein-mediated resistance	85
4.6.3.1. Establishment of regeneration system	
suitable for <i>N.tabacum</i> cv. White Bur-	
ley	85
4.6.3.2. Tobacco transformation	89
4.6.3.3. Isolation of ToMV and PVY ^O cp	

genes using IC-RT-PCR	91
4.6.3.4. Cloning of coat protein genes into the	
binary vector	91
4.6.3.5. <i>Agrobacterium</i> transformation	95
4.6.3.6. Tobacco transformation and regener-	
ation	95
4.6.3.7. Evaluation of transgenic tobacco resis-	
tance	100
V-SUMMARY	103
VI-REFERANCES	107
APPENDIX	131
ARABIC SUMMARY	

LIST OF TABLES

Table no.	Page no.
1. SDS-PAGE preparations	. 25
2. MS medium salts and vitamins stock solutions	31
3. Reaction of some differential hosts after mechanical	
inoculation with ToMV or PVY ⁰	. 45
4. Serological confirmation of ToMV and PVY ^O isolate	2
using indirect ELISA	50
5. Determination of purified ToMV and PVY dilution	1
end point using infectivity assay and indirect ELISA	52
6. Titration of ToMV and PVY ^O purified IgGs using	
indirect ELISA	56
7. Comparison between the organization of ToMV	
genome and five overseas isolates	68
8. Similarity (%) between five overseas ToMV iso-	
lates and the Egyptian isolate depending on DNA	
and deduced amino acids full and genes sequences	70
9. Effect of meristem length on potato culture success	
and production of virus-free plantlets	77
10. Effect of meristem length and ribavirin level in	
culturing medium on potato culture success and	
production of virus-free plantlets	77
11. ELISA values at 405 nm for PVY in <i>N. tabacum</i>	ļ.
cv. White Burley challenged with PVY ^N at differen	t
time intervals	. 80
12. ELISA values at 405 nm for PVY ^N at different	t
time intervals after challenging PVY^{O} infected N .	
tabacum cv White Burley plants	81
13. Number of shoot-forming calli as affected with ex-	
plant origin and cytokinin:auxin level	86
14. Average number of elongated shoots per callus	
as affected with explant origin and cytokinin:auxin	
level	87

15. Serological confirmation of ToMV and PVY ^O coat	
protein expression in transformed tobacco plants	
using indirect ELISA	97
16. Biological detection of ToMV and PVY ^O in chall-	
enged transformed tobacco plants	101

LIST OF FIGURES

Fig no.	Page no.
1. Schematic drawing of pBI121 plasmid	. 33
2. Differential hosts mechanically inoculated with	
ToMV isolate	46
3. Differential hosts mechanically inoculated with	
PVY ^O isolate	47
4. Inclusion bodies induced in epidermal strips cells	
from infected tobacco plants	49
5. Ultraviolet absorption spectra of ToMV and PVY ⁰	
purified preparations	53
6. Electron micrographs of negatively stained purified	
virus preparations	55
7. Double diffusion test in agar for ToMV (A) and	
PVY ⁰ (B)	57
8. Tissue blot assay for ToMV (A) and PVY ^O (B).	58
9. Dot blot immunobinding assay for ToMV (A)	
and PVY ^O (B)	62
10. SDS-PAGE for the determination of ToMV and	
PVY ^o coat protein weights	63
11. DNA sequence and deduced amino acids of the	
full genome of ToMV isolate	64
12. Schematic organization of ToMV genome	69
13. Phylogenetic trees between ToMV under inves-	
tigation and five overseas isolates	71
14. Production of PVY ^O -free plantlets	76
15. Symptoms produced on cross protected tobacco	
between PVY ^O and PVY ^N	79
16. ELISA values curves for PVY ^O and PVY ^N in	
tobacco at different time intervals	82
17. Stages of tobacco regeneration system	88
18. Selection stage	90

19. GUS assay	90
20. IC-RT-PCR for isolation of ToMV (A) and PVY ^O	
(B) <i>cp</i> genes	92
21. Analysis of restriction digestion product of pBI121	
digested with SmaI and SacI	93
22. Schematic drawings of T-DNA of pBI121-ToMV	
(A) and pBI121- PVY ^O (B)	94
23. PCR of transformed and untransformed <i>Agrobac</i> -	
terium DNA	96
24. PCR & RT-PCR for ToMV (A) and PVY ^O (B)	
coat protein transformed, untransformed and	
virus infected tobacco plants	99

1. INTRODUCTION

Tomato (*Lycopersicon esculantum* L.) is one of the most economical vegetable crops worldwide which is subjected to different pathogens (**Broadbent**, 1964 and Brunt *et al*, 1996). In Egypt, the cultivated area of such crop at the year 2004 was about 450000 feddans and gave a yield of about 6400000 tons (**Egyptian National Agricultural Library site: http://nile.enal.sci.eg/**). The virus diseases were found to be the most serious diseases as they reduce the yield as well as the quality of such crop (**El-Hammady** *et al*, 1983).

Tobamoviruses were reported to be an economically important virus group infecting tomato (Van Regenmortel et al, 2000). Brunt et al (1996) reported that tobacco or tomato mosaic tobmovirus (TMV or ToMV) causes mosaic symptoms with financial loss ranged from 12 to 33 % of tomato yield. Such viruses have wide host range, extremely stable and present in relatively high concentration in infected plant cells (Brunt et al, 1996).

Potato (*Solanum tuberosum* L.) is considered as an important vegetable crop in Egypt, 80% of the potatoes in Africa are produced by Egypt, South Africa, Algeria and Morocco. Growth rates have been strong, led by Egypt at 5% annually (**FAO reports, 2003**). The cultivated area at the year 2004 reached about 230000 feddans, yielded about 2200000 tons (**http://nile.enal.sci.eg/**).

Virus diseases are the most responsible factors for the loss caused in potato production. Potato was reported to be a suitable host for more than 25 plant virus (Salazar, 1996). Potato Y potyvirus (PVY) is considered the most damaging virus infecting potato crop causing great yield quantity and quality reduction (Smith, 1972). PVY has a relatively wide host range, with low concentration inside the virus-infected cells and less stable compared with ToMV (Hollings et al, 1976).

Virus disease can not be cured and so searchers were focusing on controlling the infection by different ways, i.e., removal of weed hosts, starting with virus-free planting materials and breeding of plants resistant to virus infection (**Fraser**, 1990). Recently advances in biotechnology are creating opportunities to increase food production in developing countries and reduce environmental problems associated with conventional farming practices (**Sawyer**, 1992).

Techniques of modern molecular biology and tissue culture were used and grow for more than decade, mostly for elimination of virus disease in planting material (**Trigiano and Gray, 1996 and Foster and Taylor, 1998**). For vegetatively propagated crops such as potato, production of virus-free starting materials (tubers) is very important to reduce yield loss due to over-viral infection in field (**Trigiano and Gray, 1996**).

Cross protection is a traditional way to protect plants from aggressive virus strains in field which is still used effectively. This is carried out by pre-inoculation of seedlings with a mild virus protective strain related to the aggressive one (**Pennazio** *et al*, 2001).

Some strategies of molecular biology were used for virus infection control, i.e., coat protein-mediated resistance (Powell-Abell et al, 1989; Guo et al, 2003 and Higgins et al, 2004), movement protein (Lapidot et al, 1993), replicase-mediated resistance (Carr et al, 1990 and Quemada et al, 1991).

Therefore, the present investigation aimed to control ToMV and PVY^O (common strain) depending on biotechnological methods (meristem tip culture, chemotherapy, cross protection and coat protein-mediated transformation) by carrying out the following scheme of work:

- 1- Confirmation of virus isolates, i.e., ToMV and PVY⁰.
- 2- Virus purification.
- 3- Electron microscopy.
- 4- SDS-PAGE analyses of purified virus preparations.

- 5- Raising polyclonal antisera and their evaluation.
- 6- Determination of the nucleotide sequences of the full genome of ToMV.
- 7- Sequence analysis.
- 8- Production of virus-free potato minitubers.
- 9- Establishment of regeneration and transformation systems for tobacco cv. White Burley.
- 10- IC-RT-PCR isolation of the *cp* genes of the viruses under investigation.
- 11- Preparation of two constructs containing the interest genes for *Agrobacterium* transformation.
- 12- Agrobacterium transformation of tobacco plant cv. White Burley.
- 13- Acclimatization of the putative transgenic plants.
- 14- Evaluation of the virus resistance of the tobacco transgenic lines.